合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        COP 3402 代做、代寫 c/c++,Python 程序
        COP 3402 代做、代寫 c/c++,Python 程序

        時間:2025-02-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Homework 1: P-Machine
        COP 3402: Systems Software
        Spring 2025
        See Webcourses  for due dates.
         
        Purpose
        In this homework you will form a team and implement a virtual machine called the P-machine.
        Teams must be either 1 person team or 2 people team.
        Directions
        (100 points) Implement and submit the P-machine as described in the rest of this document.
         
        For the implementation, your code must be written in ANSI standard C and must compile with gcc and run correctly on Eustis. We recommend using the flag -Wall and fixing all warnings.
        What to Read
        Our recommended book is Systems Software: Essential Concepts (by Montagne) in which we recommend reading chapters 1-3.
         
        In this assignment, you will implement a virtual machine (VM) known as the P-machine (PM/0). 
         
        P-Machine Architecture
        The P-machine is a stack machine that conceptually has one memory area called the process address space (PAS). The process address space is divided into three contiguous segments: The first 10 locations, called “unused”, the “text”, which contains the instructions for the VM to execute and the “stack,” which is organized as a data-stack to be used by the PM/0 CPU.
        Registers
        The PM/0 has a few built-in registers used for its execution: The registers are named:
        • base pointer (BP), which points to the base of the current activation record
        • stack pointer (SP), which points to the current top of the stack. The stack grows downwards., 
        • program counter (PC), which points to the next instruction to be executed.
        • Instruction Register (IR), which store the instruction to be executed
        The use of these registers will be explained in detail below. The stack grows downwards.
        Instruction Format
        The Instruction Set Architecture (ISA) of the PM/0 hasinstructions that each have three components, which are integers (i.e., they have the C type int) named as follows.
        OP​is the operation code.
            L​indicates the lexicographical level (We will give more details on L below)
        M​depending of the operators it indicates:
        ​- A number (when OP is LIT or INC).
        ​- A program address (when OP is JMP, JPC, or CAL).
        ​- A data address (when OP is LOD, STO)
        ​- The identity of the arithmetic/relational operation associated to the OPR op-code. 
            (e.g. OPR 0 2 (ADD) or OPR 0 4 (MUL))
            
        The list of instructions for the ISA can be found in Appendix A and B.
        P-Machine Cycles
        The PM/0 instruction cycle conceptually does the following for each instruction: 
         
        The PM/0 instruction cycle is carried out in two steps. The first step is the fetch cycle, where the instruction pointed to by the program counter (PC) is fetched from the “text” segment, placed in the instruction register (IR) and the PC is incremented to point to the next instruction in the code list. In the second stepthe instruction in the IR is executed using the “stack” segment. (This does not mean that the instruction is stored in the “stack segment.”)
        Fetch Cycle:
        1.- IR.OP ß pas[pc]
        ​IR.L   ß pas[pc + 1]  
        ​IR.M  ß pas[pc + 2]
        ​(note that each instruction need 3 entries in array “TEXT”. 
        2.- (PCß PC + 3). 
         
        Execute Cycle:
        The op-code (OP) component in the IR register (IR.OP) indicates the operation to be executed. For example, if IRencodes the instruction “2 0 2”, then the machine adds the top two elements of the stack, popping them off the stack in the process, and stores the result in the top of the stack (so in the end sp is one less than it was at the start). Note that arithmetic overflows and underflows happen as in C int arithmetic.  ​​​​
        PM/0 initial/Default Values
        When the PM/0 starts execution. 
         
        BP == 499, SP == 500, and PC == 10; 
         
        This means that execution starts with the “text segment” element 10. Similarly, the initial “stack” segment values are all zero (BP=499 and SP = BP + 1).
         
        The figure bellow illustrates the process address space:
         
         
                                          ​ ​ Last instruction    ​​ ​​​               BP   SP
             0              10                                                    
        PAS    UNUSED              TEXT    OP    L    M                      STACK              ??? 
                                                                         499    500     
                            PC                                                            
         
        Size Limits
         
        Initial values for PM/0 CPU registers are:
        BP = 499 
        SP = BP + 1; 
        PC = 10;
        Initial process address space values are all zero:  
        pas[0] =0, pas[1] =0, pas[3] =0…..[n-1] = 0. 
        Constant Values:
        ARRAY_SIZE is 500
         
         
        Note: Be aware that in PM/0 the stack is growing downwards
        Assignment Instructions and Guidelines: 
        1. The VM must be written in C and must run on Eustis3. If it runs in your PC but not on Eustis, for us it does not run.
        2. The input file name should be read as a command line argument at runtime, for example: $ ./a.out input.txt (A deduction of 5 points will be applied to submissions that do not implement this).
        3. Program output should be printed to the screen, and should follow the formatting of the example in Appendix C. A deduction of 5 points will be applied to submissions that do not implement this.
        4. Submit to Webcourses:
        a) A readme text file indicating how to compile and run the VM
        b) The source code of your PM/0 VM which should be named “vm.c”
        c) A signed sheet indicating the contribution of each team member to the project.
        d) Student names should be written in the header comment of each source code file, in the readme, and in the comments of the submission
        e) Do not change the ISA. Do not add instructions or combine instructions. Do not change the format of the input. If you do so, your grade will be zero.
        f) Include comments in your program. If you do not comments, your grade will be zero.
        g) Do not implement each VM instruction with a function. If you do, a penalty of -100 will be applied to your grade. You should only have functions: main, base, auxiliary functions to print but you must not use functions to implement instructions or FETCH. (Appendix D).
        h) The team member(s) must be the same for all projects. In case of problems within the team. The team will be split and each member must continue working as a one-member team for all other projects.
        i) On late submissions:
        o One day late 10% off.
        o Two days late 20% off.
        o Submissions will not be accepted after two days.
        o Resubmissions are not accepted after two days.
        o Your latest submission is the one that will be graded.
         
        We will be using a bash script to test your programs. This means your program should follow the output guidelines listed (see Appendix C for an example). You don’t need to be concerned about whitespace beyond newline characters. We use diff -w.
         
         
         
         
         
         
        Rubric:
        If you submit a program from another semester or we detect plagiarism your grade is F for this course. 
        Using functions to implement instructions even if only one is implemented that way, means that your grade will be “zero”.
        Pointers and handling of dynamic data structures is not allowed. If you do your grade is “zero”.  Only file pointer is allowed.
        -100 – Does not compile
        10 – Compiles
        25 – Produces lines of meaningful execution before segfaulting or looping infinitely
        5 – Follows IO specifications (takes command line argument for input file name and prints output to console)
        10 – README.txt containing author names
        5 – Fetch cycle is implemented correctly
        10 – Well commented source code
        5 – Arithmetic instructions are implemented correctly
        5 – Read and write instructions are implemented correctly
        10 – Load and store instructions are implemented correctly
        10 – Call and return instructions are implemented correctly
        5 – Follows formatting guidelines correctly, source code is named vm.c
        Appendix A 
         
        Instruction Set Architecture (ISA) – (eventually we will use “stack” to refer to the    stack segment in PAS)
         
        In the following tables, italicized names (such as p) are meta-variables that refer to integers.  If an instruction’s field is notated as “-“, then its value does not matter (we use 0 as a placeholder for such values in examples).
         
        ISA:
        01   – ​LIT​0, M​​Pushes a constant value (literal) M onto the stack
         
        02   – ​OPR​0, M​​Operation to be performed on the data at the top of the stack.​​​ ​​(orreturn from function)
         
        03   – ​LOD​L, M​​Load value to top of stack from the stack location at  offset M from L lexicographical levels down
        ​​​
        04   – ​STO​L, M​​Store value at top of stack in the stack location at offset M 
          from L lexicographical levels down
         
        05   – ​CAL​L, M​​Call procedure at code index M (generates new 
           Activation Record and PC ß M)
         
        06   – ​INC​0, M​​Allocate M memory words (increment SP by M). First three​​​​​are reserved to   Static Link (SL), Dynamic Link (DL),                    ​​​​​and Return Address (RA)
         
        07   – ​JMP​0, M​​Jump to instruction M (PC ßM)
         
        08   – ​JPC 0, M​​Jump to instruction M if top stack element is 0
         
        09   – ​SYS 0, 1​​Write the top stack element to the screen
         
          ​SYS 0, 2​​Read in input from the user and store it on top of the stack 
         
          SYS 0, 3​​End of program (Set “eop” flag to zero)
           
           
           
         
         
         
        OP Code Number    OP Mnemonic    L    M    Comment (Explanation)
        01    LIT    0    n    Literal push: sp ß sp- 1; pas[sp] ßn 
        02    RTN    0    0    Returns from a subroutine is encoded 0 0 0 and restores the caller’s AR:
        sp ← bp + 1; bp ← pas[sp - 2];  pc ← pas[sp -3];
        03    LOD    n    a    Load value to top of stack from the stack location at offset o from n lexicographical levels down
        sp ß sp - 1;
        pas[sp] ß pas[base(bp, n) - o];
        04    STO    n    o    Store value at top of stack in the stack location at offset o from n lexicographical levels down
        pas[base(bp, n) - o] ß pas[sp];
        sp = sp +1;
        05    CAL    n    a    Call the procedure at code address a, generating a new activation record and setting PC to a:
        pas[sp - 1]  ß  base(bp, n); /* static link (SL)
        pas[sp - 2]  ß bp;​/* dynamic link (DL)
        pas[sp - 3]  ß pc;​ /*return address (RA)​
        bp ß sp - 1;
        pc ß a;
        06    INC    0    n    Allocate n locals on the stack
        sp ß sp - n;
        07    JMP    0    a    Jump to address a:
        PC ← a
        08    JPC    0    a    Jump conditionally: if the value in stack[sp] is 0, then jump to a and pop the stack:if (stack[SP] == 0) then { pc (← a; } sp ← sp+1
        09    SYS    0    1    Output of the value in stack[SP] to standard output as a character and pop:putc(stack[sp]); sp ← sp+1
        (You can use printf if you wish) 
             SYS    0    2    Read an integer, as character value, from standard input (stdin) and store it on the top of the stack.sp ← sp-1; stack[sp] ← getc(); 
        (You can use fscanf if you wish)
             SYS    0    3    Halt the program (Set “eop” flag to zero)
         
        Appendix B (Arithmetic/Logical Instructions)
         
        ISA Pseudo Code
           
         
        02 – OPR  0, #​​(1 <= # <= 10)
            
         
        ​​​​1​ADD​​pas[sp + 1] ß pas[sp + 1] + pas[sp]
        ​​​​​​​sp ß sp + 1;
         
          2​SUB​​pas[sp + 1] ß pas[sp + 1] - pas[sp]
        ​​​​​​​sp ß sp + 1;
         
          3​MUL​​pas[sp + 1] ß pas[sp + 1] * pas[sp]
        ​​​​​​​sp ß sp + 1;
         
          4​DIV​​pas[sp + 1] ß pas[sp + 1] / pas[sp]
        ​​​​​​​sp ß sp + 1;
         
          5​EQL​​pas[sp + 1] ß pas[sp + 1] == pas[sp]
        ​​​​​​​sp ß sp + 1;
         
          6​NEQ​​pas[sp + 1] ß pas[sp + 1] != pas[sp]
        ​​​​​​​sp ß sp + 1;
         
          7​LSS​​pas[sp + 1] ß pas[sp + 1] < pas[sp]
        ​​​​​​​sp ß sp + 1;
         
          8​LEQ​​pas[sp + 1] ß pas[sp + 1] <= pas[sp]
        ​​​​​​​sp ß sp + 1;
         
          9​GTR​​pas[sp + 1] ß pas[sp + 1] > pas[sp]
        ​​​​​​​sp ß sp + 1;
         
          10​GEQ​​pas[sp + 1] ß pas[sp + 1] >= pas[sp]
        ​​​​​​​sp ß sp + 1;
         
           
         
         
         
         
        Appendix C
        Example of Execution
         
        This example shows how to print the stack after the execution of each instruction.
         
        INPUT FILE (In this example the program was stored at memory address zero)
        For every line, there must be 3 values representing OP, Land M.
         
        7 0 45
        7 0 6
        6 0 4
        1 0 4
        1 0 3
        2 0 3
        4 1 4
        1 0 14
        3 1 4
        2 0 7
        8 0 39
        1 0 7
        7 0 42
        1 0 5
        2 0 0
        6 0 5
        9 0 2
        5 0 6
        9 0 1
        9 0 3
         
        When the input file (program) is read in to be stored in the text segment starting at location 10 in the process address space, each instruction will need three memory locations to be stored. Therefore, the PC must be incremented by 3 in the fetch cycle.
         
        10              13              16              19              22              25              …
        7    0    45    7    0    6    6    0    4    1    0    4    1    0    3    2    0    4    etc
         
         
        The initial CPU register values for the example in this appendix are:
        SP = 500;
        BP = SP - 1; 
        PC = 10;
        IR  = 0 0 0; (a struct or a linear array can be used to implement IR) 
        Hint: Each instruction uses 3 array elements and each data value just uses 1 array element. 
         
         
        OUTPUT FILE (In this example the program was storedat memory address zero)
        Print out the execution of the program in the virtual machine, showing the stack and pc, bp, and sp.
         
        NOTE: It is necessary to separate each Activation Record with a bar “|”.  
         
        ​​​​PC​BP​SP​stack
        Initial values:​10​499​500
         
        ​JMP​0​45​45​499​500​
        ​INC​0​5​48​499​495​0 0 0 0 0 
        Please Enter an Integer: 3
        ​SYS​0​2​51​499​494​0 0 0 0 0 3 
        ​CAL​0​6​6​493​494​0 0 0 0 0 3 
        ​INC​0​4​9​493​490​0 0 0 0 0 3 | 499 499 54 0 
        ​LIT​0​4​12​493​489​0 0 0 0 0 3 | 499 499 54 0 4 
        ​LIT​0​3​15​493​488​0 0 0 0 0 3 | 499 499 54 0 4 3 
        ​MUL​0​3​18​493​489​0 0 0 0 0 3 | 499 499 54 0 12 
        ​STO​1​4​21​493​490​0 0 0 0 12 3 | 499 499 54 0 
        ​LIT​0​14​24​493​489​0 0 0 0 12 3 | 499 499 54 0 14 
        ​LOD​1​4​27​493​488​0 0 0 0 12 3 | 499 499 54 0 14 12 
        ​LSS​0​7​30​493​489​0 0 0 0 12 3 | 499 499 54 0 0 
        ​JPC​0​39​39​493​490​0 0 0 0 12 3 | 499 499 54 0 
        ​LIT​0​5​42​493​489​0 0 0 0 12 3 | 499 499 54 0 5 
        ​RTN​0​0​54​499​494​0 0 0 0 12 3 
        Output result is: 3
        ​SYS​0​1​57​499​495​0 0 0 0 12 
        ​SYS​0​3​60​499​495​0 0 0 0 12 
         
         
         
         
        Appendix D
         
        Helpful Tips
         
        This function will be helpful to find a variable in a different Activation Record some L levels down:
         
        /**********************************************/
        /*​​Find base L levels down​​ */
        /*​​​​​​​ */
        /**********************************************/
         
        int base( int BP, int L)
        {
        ​int arb = BP;​// arb = activation record base
        ​while ( L > 0)     //find base L levels down
        ​{
        ​​arb = pas[arb];
        ​​L--;
        ​}
        ​return arb;
        }
         
        For example in the instruction:
         
        STO L, M  - You can do stack [base (IR.L) +  IR.M]= pas[SP] to store the content of  the top of the stack into an AR in the stack,  located L levels down from the current AR.
         
        Note1: we are working at the CPU level therefore the instruction format must have only 3 fields. Any program whose number of fields in the instruction format is graterthan 3 will get a zero.
         
        Note2: If your program does not follow the specifications, your grade will get a zero.
         
        Note3: if any of the instructions is implemented by calling a function, your grade will be zero.
         
        Note4: If you use dynamic memory handling, your grade will be zero.
         
        Note5: Pointers are not allowed, except to read a file.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




        ​​​​​​​

        掃一掃在手機打開當前頁
      1. 上一篇:代寫指標 通達信【備戰龍妖】副圖指標
      2. 下一篇:代寫 CMU 18-879、代做 Python 編程語言
      3. ·CIV6782代做、代寫Python程序語言
      4. ·CS305程序代做、代寫Python程序語言
      5. ·代寫FN6806、代做c/c++,Python程序語言
      6. ·代寫CS-UY 4563、Python程序語言代做
      7. ·CE235編程代寫、代做python程序設計
      8. ·COMP2010J代做、代寫c/c++,Python程序
      9. ·COMP09110代做、代寫Python程序設計
      10. ·&#160;COMP338編程代做、代寫Python程序語言
      11. ·代寫MATH36031、Python程序設計代做
      12. ·CDS523編程代寫、代做Python程序語言
      13. 合肥生活資訊

        合肥圖文信息
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
      14. 幣安app官網下載 短信驗證碼

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 中文无码AV一区二区三区| 亚洲日韩一区精品射精| 亚洲av片一区二区三区| 国产一区二区免费在线| 一区二区精品久久| 国产精品毛片a∨一区二区三区| 一区在线观看视频| 无码精品视频一区二区三区| 国产精品自拍一区| 日韩精品无码久久一区二区三| 国产精品一区三区| 日韩一区二区超清视频| 国产一区二区三区四| 国产AV午夜精品一区二区三区| 蜜臀AV一区二区| 日韩毛片一区视频免费| 无码精品黑人一区二区三区| 亚洲国产欧美一区二区三区| 合区精品久久久中文字幕一区| 日本不卡一区二区三区| 国产第一区二区三区在线观看 | 少妇特黄A一区二区三区| 在线观看精品一区| 久久久91精品国产一区二区三区| 亚洲一区精品视频在线| 一区二区三区在线观看免费| 无码人妻精品一区二区三区99仓本 | 欧洲无码一区二区三区在线观看| 国精产品999一区二区三区有限| 国产伦精品一区二区三区免费迷 | 精品一区二区三区在线播放 | 亚洲一区免费观看| 国产a久久精品一区二区三区| 日韩一区二区电影| 国产不卡视频一区二区三区| 亚洲熟妇AV一区二区三区宅男| 成人免费av一区二区三区| 无码日韩精品一区二区免费| 中文字幕无码一区二区免费 | 亚洲成AV人片一区二区| 91一区二区视频|