99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS-UY 4563、Python程序語言代做
代寫CS-UY 4563、Python程序語言代做

時間:2024-12-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Final Project
CS-UY 4563 - Introduction to Machine Learning
Overview
• Partner with one student and select a machine learning problem of your choice.
• Apply the machine learning techniques you’ve learned during the course to
your chosen problem.
• Present your project to the class at the semester’s end.
Submission Requirements on Gradescope
Submit the following on Gradescope by the evening before the first presentation (exact
date to be announced):
• Presentation slides.
• Project write-up (PDF format).
• Project code as a Jupyter Notebook. If necessary, a GitHub link is acceptable.
• If using a custom dataset, upload it to Gradescope (or provide a GitHub link, if
necessary).
1Project Guidelines
Write-Up Requirements
Your project write-up should include the following:
1. Introduction: Describe your data set and the problem you aim to solve.
2. Perform some unsupervised analysis:
• Explore pattern or structure in the data using clustering and dimensionality (e.g
PCA).
• Visualize the training data
1
:
– Plot individual features to understand their distribution (e.g., histograms
or density plots).
– Plot individual features and their relationship with the target variable.
– Create a correlation matrix to analyze relationships between features.
• Discuss any interesting structure is present in the data. If you don’t find any
interesting structure, describe what you tried.
3. Supervised analysis: Train at least three distinct learning models
2 discussed in
the class (such as Linear Regression, Logistic Regression, SVM, Neural Networks,
CNN).
3
For implementation, you may:
• Use your own implementation from homework or developed independently.
• Use libraries such as Keras, scikit-learn, or TensorFlow.
For each model,
4 you must:
• Try different feature transformations. You should have at least three transformations.
 For example, try the polynomial, PCA, or radial-basis function kernel.
For neural networks, different architectures (e.g., neural networks with varying
numbers of layers) can also be considered forms of feature transformations, as
they learn complex representations of the input data.
• Use different regularization techniques. You should have at least 6 different
regularization values per model
1Do not look at the validation or test data.
2You can turn a regression task into a classification task by binning, or for the same dataset, select a
different feature as the target for your model. Or you can use SVR.
3
If you wish to use a model not discussed in class, you must discuss it with me first, or you will not
receive any points for that model.
4Even if you get a very high accuracy, perform these transformations to see what happens.
24. Table of Results:
• Provide a table with training accuracy and validation metrics for every model.
Include results for the different parameter settings (e.g., different regularization
values).
– For classification include metrics such as precision/recall.
– For regression modes, report metrics like MSE, R2
. For example, suppose
you’re using Ridge Regression and manipulating the value of λ. In that
case, your table should contain the training and validation accuracy for
every lambda value you used.
• Plot and analyze how performance metrics (like accuracy, precision, recall, MSE)
change with different feature transformations, hyperparameters (e.g.regularization
settings, learning rate).
5. Analytical Discussion:
• Analyze the experimental results and explain key findings. Provide a chart of
your key findings.
• Highlight the impact of feature transformations, regularization, and other hyperparameters
 on the model’s performance. Refer to the graphs provide in earlier
sections to support your analysis. Focus on interpreting:
– Whether the models overfit or underfit the data.
– How bias and variance affect performance, and which parameter choices
helped achieve better generalization.
Presentation Guidelines
• You and your partner will give a six-minute presentation to the class.
• Presentations will be held during the last 2 or 3 class periods and during the final
exam period for this class. You will be assigned a day for your presentation. If we
run out of time the day you are to present your project, you will present the next
day reserved for presentations.
• Attendance during all presentations is required. A part of your project grade
will be based on your attendance for everyone else’s presentation.
Important Notes on Academic Integrity
• Your submission will undergo plagiarism checks.
• If we suspect you of cheating, you will receive 0 for your final project grade. See the
syllabus for additional penalties that may be applied.
3Dataset Resources
Below are some resources where you can search for datasets. As a rough guideline, your
dataset should have at least 200 training examples and at least 10 features. You
are free to use these resources, look elsewhere, or create your own dataset.
• https://www.kaggle.com/competitions
• https://www.openml.org/
• https://paperswithcode.com/datasets
• https://registry.opendata.aws/
• https://dataportals.org/
• https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
• https://www.reddit.com/r/datasets/
• https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
Modifications
• If you have a project idea that doesn’t satisfy all the requirements mentioned above,
please inform me, and we can discuss its viability as your final project.
• If you use techniques not covered in class, you must demonstrate your understanding
of these ideas.
Brightspace Submissions Guidelines
• Dataset and Partner: Submit the link to your chosen dataset and your partner’s
name by October 30th.
• Final Submissions: Upload your presentation slides, project write-up, and code to
Gradescope by the evening before the first scheduled presentation. The exact date
will be announced once the total number of projects is confirmed. (I expect the due
date to be December 4th or December 9th.)
Potential Challenges and Resources
As you work with your dataset, you may encounter specific challenges that require additional
 techniques or tools. Below are some topics and resources that might be useful.
Please explore these topics further through online research.
4• Feature Reduction: Consider using PCA (which will be covered in class). PCA is
especially useful when working with SVMs, as they can be slow with high-dimensional
data.
If you choose to use SelectKBest from scikit-learn, you must understand why it works
before you use it.
• Creating Synthetic Examples: When using SMOTE or other methods to generate
synthetic data, ensure that only real data is used in the validation and test sets.
- If using synthetic data, make sure your validation set and test set mirrors the true
class proportions from the original dataset. A balanced test set for naturally unbalanced
 data can give misleading impressions of your model’s real-world performance.
For more details, see: Handling Imbalanced Classes
• Working with Time Series Data: For insights on working with time series data,
visit: NIST Handbook on Time Series
• Handling Missing Feature Values:
– See Lecture 16 at Stanford STATS 306B
– Techniques to Handle Missing Data Values
– How to Handle Missing Data in Python
– Statistical Imputation for Missing Data
• Multiclass Classification:
– Understanding Softmax in Multiclass Classification
– Precision and Recall for Multiclass Metrics
• Optimizers for Neural Networks: You may use Adam or other optimizers for
training neural networks.
• Centering Image Data with Bounding Boxes: If you are working with image
data, you are allowed to use bounding boxes to center the objects in your images. You
can use libraries like OpenCV (‘cv2’).
Tips
Don’t forget to scale your data as part of preprocessing. Be sure to document any modifications
 you made, including the scaling or normalization techniques you applied.
The following resource might be helpful. Please stick to topics we discussed in class or
those mentioned above: CS229: Practical Machine Learning Advice

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓萊特省旅游經濟好嗎(景點推薦)
  • 下一篇:ENG6編程代寫、代做MATLAB語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产熟妇一区二区三区四区| 久久久精品一区二区涩爱| 国产又粗又猛又爽又黄视频 | 九九视频免费看| 一区二区在线观看免费视频| 国产精品九九九九九九| 微拍福利一区二区| 极品颜值美女露脸啪啪| 亚洲精品第三页| 欧洲精品久久一区二区| 动漫精品一区二区三区| 无码人妻精品一区二区中文| 国产专区第一页| 亚洲系列第一页| 色综合免费视频| 精品国产av色一区二区深夜久久| 最新国产精品自拍| 人妻妺妺窝人体色www聚色窝| jizzjizzjizz国产| 亚洲av成人精品一区二区三区| 国产亚洲欧美精品久久久www| 最近日本中文字幕| 日韩大片一区二区| 国产这里有精品| 99精品久久久久| 亚洲 欧美 激情 小说 另类| 久久亚洲AV无码专区成人国产| а天堂中文在线资源| 亚洲黄网在线观看| 四虎在线视频免费观看| 麻豆亚洲av熟女国产一区二| 国产精品九九九九九| 中文字幕在线播放日韩| 三叶草欧洲码在线| 蜜臀精品一区二区三区| 国产女人爽到高潮a毛片| 91精品国产色综合久久不8| 在线免费黄色av| 日韩精品在线播放视频| 久久久久久av无码免费网站| 国产精品第六页| www欧美com| 97精品人妻一区二区三区在线| 亚洲av无码成人精品区| 天堂在线视频免费| 日本黄色免费片| 免费看一级一片| 久久精品无码人妻| 极品国产91在线网站| 国产寡妇亲子伦一区二区三区四区| 亚洲人成人无码网www国产| 亚洲av无码一区东京热久久| 天天爱天天做天天爽| 日韩女优一区二区| 人妻中文字幕一区二区三区| 免费在线不卡av| 男女无套免费视频网站动漫| 精品中文字幕在线播放| 激情综合网五月天| 国内av一区二区| 国内精品偷拍视频| 韩国视频一区二区三区| 激情五月俺来也| 精品一级少妇久久久久久久| 精品久久久免费视频| 精品无码久久久久久久久| 精品人妻久久久久一区二区三区| 国产一区二区小视频| 国内精品福利视频| 精品无码人妻一区| 蜜臀一区二区三区精品免费视频| 蜜桃色一区二区三区| 浓精h攵女乱爱av| 日韩欧美三级视频| 亚洲 精品 综合 精品 自拍| 在线观看免费国产视频| 亚洲日本精品视频| av片在线免费看| 国产三级av在线播放| 久草福利在线观看| 欧美人一级淫片a免费播放| 人妻精品无码一区二区| 婷婷久久久久久| 中文字幕在线观看91| 99精品一区二区三区无码吞精| 国产成人av免费看| 精品无码人妻一区二区免费蜜桃| 蜜桃久久精品成人无码av| 日日噜噜噜噜久久久精品毛片| 天天干在线影院| 亚洲欧美另类综合| www.欧美com| 精品少妇久久久| 少妇无套高潮一二三区| 中文字幕人妻一区| 国产a免费视频| 久久免费公开视频| 天堂资源在线视频| 亚洲免费成人在线| 国产精品自拍99| 男女视频免费看| 真实乱视频国产免费观看| av免费播放网站| 精品国产乱码久久久久夜深人妻| 日韩av黄色片| 亚洲一区二区三区网站| 国产精选第一页| 日本aⅴ在线观看| 亚洲精品鲁一鲁一区二区三区| 国产成人精品一区二区三区在线观看| 精品人妻一区二区三区三区四区| 日韩不卡高清视频| 337p日本欧洲亚洲大胆张筱雨| 国产三级精品三级在线观看| 日本一二三区在线| 91嫩草|国产丨精品入口| 久久久久99精品| 中日韩黄色大片| 国产一级特黄a大片免费| 日韩欧美一级视频| 99热精品在线播放| 免费精品99久久国产综合精品应用| 中文在线免费看视频| 国产性生活大片| 尤物国产在线观看| 国产又黄又猛又爽| 又大又长粗又爽又黄少妇视频| 国产精品乱码一区二区视频| 天堂av在线免费| 国产极品久久久| 手机在线视频一区| 国产肥白大熟妇bbbb视频| 天天综合永久入口| 国产熟女一区二区丰满| 在线观看国产中文字幕| 精品欧美一区二区三区免费观看| 在线观看黄网站| 老熟妇仑乱一区二区av| 91精品国产高潮对白| 日本一区二区欧美| 国产精品av久久久久久无| 亚洲a级黄色片| 久久久精品少妇| 99国产精品久久久久久| 天天干在线播放| 国产一区二区三区成人| 亚洲欧美卡通动漫| 日韩免费视频网站| 国产免费999| 亚洲另类欧美日韩| 日本中文字幕在线不卡| 国产精品九九九九九九| 在线不卡免费视频| 欧美日韩一区二区区别是什么| 福利一区二区三区四区| 在线免费av网| 日本一区二区三区精品| 国产影视一区二区| aaaaaav| 亚洲av无码精品一区二区| 免费人成视频在线播放| 国产精品久久久久久久久夜色 | 一区二区三区人妻| 久久久久99精品| 国产寡妇亲子伦一区二区三区四区| 性一交一乱一乱一视频| 久久亚洲无码视频| 国产极品国产极品| 亚洲综合一二三| 亚洲第一在线播放| 日韩在线观看视频一区二区三区 | 女同激情久久av久久| 国产伦子伦对白视频| 一本久道久久综合无码中文| 天天插天天干天天操| 欧美另类视频在线观看| 国产一级中文字幕| 国产成人精品亚洲男人的天堂| 亚洲国产精品久| 天天操夜夜操很很操| 欧美日韩人妻精品一区二区三区| 国产亚洲欧美精品久久久久久| xxxx一级片| 91视频免费在线看| 亚洲乱码精品久久久久..| 亚洲AV无码精品自拍| 天天摸日日摸狠狠添| 日本成人在线免费观看| 九九热视频精品| 精品国产xxx| 国产一级视频在线播放| 国产欧美视频一区| 国产精品suv一区二区| 丰满人妻妇伦又伦精品国产| av永久免费观看| av一级黄色片| www.久久精品.com| av中文字幕免费| 成 人 黄 色 小说网站 s色| 97成人免费视频|