99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS-UY 4563、Python程序語言代做
代寫CS-UY 4563、Python程序語言代做

時間:2024-12-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Final Project
CS-UY 4563 - Introduction to Machine Learning
Overview
• Partner with one student and select a machine learning problem of your choice.
• Apply the machine learning techniques you’ve learned during the course to
your chosen problem.
• Present your project to the class at the semester’s end.
Submission Requirements on Gradescope
Submit the following on Gradescope by the evening before the first presentation (exact
date to be announced):
• Presentation slides.
• Project write-up (PDF format).
• Project code as a Jupyter Notebook. If necessary, a GitHub link is acceptable.
• If using a custom dataset, upload it to Gradescope (or provide a GitHub link, if
necessary).
1Project Guidelines
Write-Up Requirements
Your project write-up should include the following:
1. Introduction: Describe your data set and the problem you aim to solve.
2. Perform some unsupervised analysis:
• Explore pattern or structure in the data using clustering and dimensionality (e.g
PCA).
• Visualize the training data
1
:
– Plot individual features to understand their distribution (e.g., histograms
or density plots).
– Plot individual features and their relationship with the target variable.
– Create a correlation matrix to analyze relationships between features.
• Discuss any interesting structure is present in the data. If you don’t find any
interesting structure, describe what you tried.
3. Supervised analysis: Train at least three distinct learning models
2 discussed in
the class (such as Linear Regression, Logistic Regression, SVM, Neural Networks,
CNN).
3
For implementation, you may:
• Use your own implementation from homework or developed independently.
• Use libraries such as Keras, scikit-learn, or TensorFlow.
For each model,
4 you must:
• Try different feature transformations. You should have at least three transformations.
 For example, try the polynomial, PCA, or radial-basis function kernel.
For neural networks, different architectures (e.g., neural networks with varying
numbers of layers) can also be considered forms of feature transformations, as
they learn complex representations of the input data.
• Use different regularization techniques. You should have at least 6 different
regularization values per model
1Do not look at the validation or test data.
2You can turn a regression task into a classification task by binning, or for the same dataset, select a
different feature as the target for your model. Or you can use SVR.
3
If you wish to use a model not discussed in class, you must discuss it with me first, or you will not
receive any points for that model.
4Even if you get a very high accuracy, perform these transformations to see what happens.
24. Table of Results:
• Provide a table with training accuracy and validation metrics for every model.
Include results for the different parameter settings (e.g., different regularization
values).
– For classification include metrics such as precision/recall.
– For regression modes, report metrics like MSE, R2
. For example, suppose
you’re using Ridge Regression and manipulating the value of λ. In that
case, your table should contain the training and validation accuracy for
every lambda value you used.
• Plot and analyze how performance metrics (like accuracy, precision, recall, MSE)
change with different feature transformations, hyperparameters (e.g.regularization
settings, learning rate).
5. Analytical Discussion:
• Analyze the experimental results and explain key findings. Provide a chart of
your key findings.
• Highlight the impact of feature transformations, regularization, and other hyperparameters
 on the model’s performance. Refer to the graphs provide in earlier
sections to support your analysis. Focus on interpreting:
– Whether the models overfit or underfit the data.
– How bias and variance affect performance, and which parameter choices
helped achieve better generalization.
Presentation Guidelines
• You and your partner will give a six-minute presentation to the class.
• Presentations will be held during the last 2 or 3 class periods and during the final
exam period for this class. You will be assigned a day for your presentation. If we
run out of time the day you are to present your project, you will present the next
day reserved for presentations.
• Attendance during all presentations is required. A part of your project grade
will be based on your attendance for everyone else’s presentation.
Important Notes on Academic Integrity
• Your submission will undergo plagiarism checks.
• If we suspect you of cheating, you will receive 0 for your final project grade. See the
syllabus for additional penalties that may be applied.
3Dataset Resources
Below are some resources where you can search for datasets. As a rough guideline, your
dataset should have at least 200 training examples and at least 10 features. You
are free to use these resources, look elsewhere, or create your own dataset.
• https://www.kaggle.com/competitions
• https://www.openml.org/
• https://paperswithcode.com/datasets
• https://registry.opendata.aws/
• https://dataportals.org/
• https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
• https://www.reddit.com/r/datasets/
• https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
Modifications
• If you have a project idea that doesn’t satisfy all the requirements mentioned above,
please inform me, and we can discuss its viability as your final project.
• If you use techniques not covered in class, you must demonstrate your understanding
of these ideas.
Brightspace Submissions Guidelines
• Dataset and Partner: Submit the link to your chosen dataset and your partner’s
name by October 30th.
• Final Submissions: Upload your presentation slides, project write-up, and code to
Gradescope by the evening before the first scheduled presentation. The exact date
will be announced once the total number of projects is confirmed. (I expect the due
date to be December 4th or December 9th.)
Potential Challenges and Resources
As you work with your dataset, you may encounter specific challenges that require additional
 techniques or tools. Below are some topics and resources that might be useful.
Please explore these topics further through online research.
4• Feature Reduction: Consider using PCA (which will be covered in class). PCA is
especially useful when working with SVMs, as they can be slow with high-dimensional
data.
If you choose to use SelectKBest from scikit-learn, you must understand why it works
before you use it.
• Creating Synthetic Examples: When using SMOTE or other methods to generate
synthetic data, ensure that only real data is used in the validation and test sets.
- If using synthetic data, make sure your validation set and test set mirrors the true
class proportions from the original dataset. A balanced test set for naturally unbalanced
 data can give misleading impressions of your model’s real-world performance.
For more details, see: Handling Imbalanced Classes
• Working with Time Series Data: For insights on working with time series data,
visit: NIST Handbook on Time Series
• Handling Missing Feature Values:
– See Lecture 16 at Stanford STATS 306B
– Techniques to Handle Missing Data Values
– How to Handle Missing Data in Python
– Statistical Imputation for Missing Data
• Multiclass Classification:
– Understanding Softmax in Multiclass Classification
– Precision and Recall for Multiclass Metrics
• Optimizers for Neural Networks: You may use Adam or other optimizers for
training neural networks.
• Centering Image Data with Bounding Boxes: If you are working with image
data, you are allowed to use bounding boxes to center the objects in your images. You
can use libraries like OpenCV (‘cv2’).
Tips
Don’t forget to scale your data as part of preprocessing. Be sure to document any modifications
 you made, including the scaling or normalization techniques you applied.
The following resource might be helpful. Please stick to topics we discussed in class or
those mentioned above: CS229: Practical Machine Learning Advice

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓萊特省旅游經濟好嗎(景點推薦)
  • 下一篇:ENG6編程代寫、代做MATLAB語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                一区二区免费在线| 国产精品情趣视频| 国产福利一区二区三区视频| 亚洲三级电影网站| 欧美国产日本视频| 久久综合狠狠综合久久激情| 69堂精品视频| 91精品国产91久久久久久一区二区| 99久久婷婷国产精品综合| 国产精品456| 精品一区精品二区高清| 日韩精品高清不卡| 亚洲国产成人av好男人在线观看| 亚洲天堂中文字幕| 国产日韩欧美高清在线| 久久久99久久精品欧美| 久久九九久久九九| 国产精品久久久久久久久免费丝袜 | 91麻豆精品秘密| 99久久亚洲一区二区三区青草| 97se亚洲国产综合自在线观| 91色porny| 欧美无砖专区一中文字| 欧美色视频在线观看| 欧美一区午夜视频在线观看| 欧美一区二区大片| 久久日韩精品一区二区五区| 久久久噜噜噜久久中文字幕色伊伊 | 国产精品进线69影院| 国产精品拍天天在线| 亚洲蜜臀av乱码久久精品 | 日韩高清不卡一区二区| 麻豆一区二区三区| 成人av中文字幕| 欧美日韩视频在线第一区| 日韩视频国产视频| 国产精品欧美一级免费| 亚洲一区二区视频| 精品综合免费视频观看| 成人亚洲一区二区一| 91麻豆成人久久精品二区三区| 欧美日韩精品电影| 日韩一区二区免费电影| 欧美激情中文字幕| 亚洲在线中文字幕| 精品一区二区在线播放| 91黄色激情网站| 精品少妇一区二区三区在线视频| 亚洲色图欧洲色图婷婷| 免费观看在线综合| fc2成人免费人成在线观看播放| 欧美视频在线一区| 中文字幕不卡在线播放| 亚洲自拍偷拍av| 天堂久久久久va久久久久| 国产成人精品一区二区三区四区| 欧洲国产伦久久久久久久| 日韩美女在线视频| 亚洲网友自拍偷拍| 成人涩涩免费视频| 精品久久久网站| 亚洲一区二区视频在线观看| 国产精品一线二线三线| 91精品国产综合久久久久| 亚洲色图欧美激情| 国产盗摄一区二区| 欧美一区二区三区系列电影| 亚洲蜜桃精久久久久久久| 国产xxx精品视频大全| 欧美一区二区福利视频| 亚洲一区二区三区免费视频| 99久久99久久精品免费看蜜桃 | 亚洲欧洲国产日本综合| 极品少妇一区二区| 欧美成va人片在线观看| 欧美日韩视频在线第一区| 免费久久99精品国产| 麻豆91在线看| 91美女在线看| 国产精品无码永久免费888| 大陆成人av片| 午夜亚洲国产au精品一区二区| 欧美一区二区三区免费大片| 国产99久久久久| 亚洲v精品v日韩v欧美v专区| 久久久久久电影| 日本高清免费不卡视频| 狠狠久久亚洲欧美| 亚洲欧洲美洲综合色网| 欧美成人性福生活免费看| 91麻豆福利精品推荐| 久久99最新地址| 亚洲精品免费在线播放| 欧美精品一区二区三区很污很色的| 97久久久精品综合88久久| 美女www一区二区| 亚洲自拍偷拍av| 国产精品天干天干在观线| 日韩欧美美女一区二区三区| 91亚洲精品一区二区乱码| 韩国午夜理伦三级不卡影院| 亚洲成人激情av| 亚洲欧洲日韩一区二区三区| 精品国产乱码久久| 欧美日韩国产免费一区二区| 色综合天天综合网天天狠天天 | 亚洲伊人色欲综合网| 欧美本精品男人aⅴ天堂| 欧洲一区在线电影| 成年人网站91| 国产成人aaa| 韩国av一区二区三区在线观看| 亚洲第一主播视频| 亚洲精品久久久久久国产精华液| 久久久久9999亚洲精品| 欧美成人一区二区三区在线观看| 精品视频一区三区九区| 色激情天天射综合网| caoporn国产精品| gogogo免费视频观看亚洲一| av在线不卡电影| 不卡一区中文字幕| 99re8在线精品视频免费播放| 国产精品91xxx| 国产成人自拍高清视频在线免费播放| 久久99国产精品久久| 久久精品国产一区二区| 看电视剧不卡顿的网站| 免费观看一级特黄欧美大片| 日本成人在线视频网站| 久久 天天综合| 国产成人午夜片在线观看高清观看| 国产精品一区二区x88av| 风流少妇一区二区| 99riav一区二区三区| 色偷偷88欧美精品久久久| 欧美性三三影院| 日韩一二三区不卡| 国产亚洲自拍一区| 国产精品无圣光一区二区| 亚洲丝袜另类动漫二区| 亚洲精品一二三区| 亚洲国产美女搞黄色| 日韩va欧美va亚洲va久久| 蜜乳av一区二区| 懂色中文一区二区在线播放| 色综合久久综合中文综合网| 欧美性大战久久久久久久 | 日韩国产精品久久久| 极品瑜伽女神91| 99视频精品全部免费在线| 欧洲一区二区三区在线| 日韩一区二区在线看| 国产亚洲一本大道中文在线| 亚洲欧洲日韩在线| 丝袜亚洲另类丝袜在线| 国产一区二三区好的| 99精品视频一区| 欧美一区欧美二区| 国产欧美精品在线观看| 国产欧美日产一区| 亚洲天堂a在线| 裸体在线国模精品偷拍| av亚洲精华国产精华精华 | 精品国产一区久久| 国产精品不卡一区| 日日夜夜一区二区| 成人aa视频在线观看| 欧美日韩成人在线| 中文字幕的久久| 蜜臀av性久久久久蜜臀av麻豆| 成人性生交大片免费看中文网站| 欧美日韩免费观看一区二区三区| 日韩欧美在线不卡| 亚洲精品国久久99热| 免费观看成人鲁鲁鲁鲁鲁视频| 99久久精品国产观看| 精品久久久久久久人人人人传媒 | 国产午夜精品一区二区三区嫩草 | 国产电影一区二区三区| 欧美群妇大交群中文字幕| 国产免费成人在线视频| 日韩福利视频导航| 欧美亚洲另类激情小说| 国产精品人人做人人爽人人添| 日韩二区在线观看| 精品视频1区2区3区| 国产精品国产三级国产a| 国产一区二区在线观看免费| 欧美日本一区二区三区四区| 国产精品国产自产拍在线| 激情综合色丁香一区二区| 欧美日韩国产电影| 亚洲免费在线观看视频| 不卡视频免费播放| 国产亲近乱来精品视频| 国产呦精品一区二区三区网站| 在线电影国产精品| 一区二区三区日韩| 91丝袜美女网|