99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS-UY 4563、Python程序語言代做
代寫CS-UY 4563、Python程序語言代做

時間:2024-12-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Final Project
CS-UY 4563 - Introduction to Machine Learning
Overview
• Partner with one student and select a machine learning problem of your choice.
• Apply the machine learning techniques you’ve learned during the course to
your chosen problem.
• Present your project to the class at the semester’s end.
Submission Requirements on Gradescope
Submit the following on Gradescope by the evening before the first presentation (exact
date to be announced):
• Presentation slides.
• Project write-up (PDF format).
• Project code as a Jupyter Notebook. If necessary, a GitHub link is acceptable.
• If using a custom dataset, upload it to Gradescope (or provide a GitHub link, if
necessary).
1Project Guidelines
Write-Up Requirements
Your project write-up should include the following:
1. Introduction: Describe your data set and the problem you aim to solve.
2. Perform some unsupervised analysis:
• Explore pattern or structure in the data using clustering and dimensionality (e.g
PCA).
• Visualize the training data
1
:
– Plot individual features to understand their distribution (e.g., histograms
or density plots).
– Plot individual features and their relationship with the target variable.
– Create a correlation matrix to analyze relationships between features.
• Discuss any interesting structure is present in the data. If you don’t find any
interesting structure, describe what you tried.
3. Supervised analysis: Train at least three distinct learning models
2 discussed in
the class (such as Linear Regression, Logistic Regression, SVM, Neural Networks,
CNN).
3
For implementation, you may:
• Use your own implementation from homework or developed independently.
• Use libraries such as Keras, scikit-learn, or TensorFlow.
For each model,
4 you must:
• Try different feature transformations. You should have at least three transformations.
 For example, try the polynomial, PCA, or radial-basis function kernel.
For neural networks, different architectures (e.g., neural networks with varying
numbers of layers) can also be considered forms of feature transformations, as
they learn complex representations of the input data.
• Use different regularization techniques. You should have at least 6 different
regularization values per model
1Do not look at the validation or test data.
2You can turn a regression task into a classification task by binning, or for the same dataset, select a
different feature as the target for your model. Or you can use SVR.
3
If you wish to use a model not discussed in class, you must discuss it with me first, or you will not
receive any points for that model.
4Even if you get a very high accuracy, perform these transformations to see what happens.
24. Table of Results:
• Provide a table with training accuracy and validation metrics for every model.
Include results for the different parameter settings (e.g., different regularization
values).
– For classification include metrics such as precision/recall.
– For regression modes, report metrics like MSE, R2
. For example, suppose
you’re using Ridge Regression and manipulating the value of λ. In that
case, your table should contain the training and validation accuracy for
every lambda value you used.
• Plot and analyze how performance metrics (like accuracy, precision, recall, MSE)
change with different feature transformations, hyperparameters (e.g.regularization
settings, learning rate).
5. Analytical Discussion:
• Analyze the experimental results and explain key findings. Provide a chart of
your key findings.
• Highlight the impact of feature transformations, regularization, and other hyperparameters
 on the model’s performance. Refer to the graphs provide in earlier
sections to support your analysis. Focus on interpreting:
– Whether the models overfit or underfit the data.
– How bias and variance affect performance, and which parameter choices
helped achieve better generalization.
Presentation Guidelines
• You and your partner will give a six-minute presentation to the class.
• Presentations will be held during the last 2 or 3 class periods and during the final
exam period for this class. You will be assigned a day for your presentation. If we
run out of time the day you are to present your project, you will present the next
day reserved for presentations.
• Attendance during all presentations is required. A part of your project grade
will be based on your attendance for everyone else’s presentation.
Important Notes on Academic Integrity
• Your submission will undergo plagiarism checks.
• If we suspect you of cheating, you will receive 0 for your final project grade. See the
syllabus for additional penalties that may be applied.
3Dataset Resources
Below are some resources where you can search for datasets. As a rough guideline, your
dataset should have at least 200 training examples and at least 10 features. You
are free to use these resources, look elsewhere, or create your own dataset.
• https://www.kaggle.com/competitions
• https://www.openml.org/
• https://paperswithcode.com/datasets
• https://registry.opendata.aws/
• https://dataportals.org/
• https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
• https://www.reddit.com/r/datasets/
• https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
Modifications
• If you have a project idea that doesn’t satisfy all the requirements mentioned above,
please inform me, and we can discuss its viability as your final project.
• If you use techniques not covered in class, you must demonstrate your understanding
of these ideas.
Brightspace Submissions Guidelines
• Dataset and Partner: Submit the link to your chosen dataset and your partner’s
name by October 30th.
• Final Submissions: Upload your presentation slides, project write-up, and code to
Gradescope by the evening before the first scheduled presentation. The exact date
will be announced once the total number of projects is confirmed. (I expect the due
date to be December 4th or December 9th.)
Potential Challenges and Resources
As you work with your dataset, you may encounter specific challenges that require additional
 techniques or tools. Below are some topics and resources that might be useful.
Please explore these topics further through online research.
4• Feature Reduction: Consider using PCA (which will be covered in class). PCA is
especially useful when working with SVMs, as they can be slow with high-dimensional
data.
If you choose to use SelectKBest from scikit-learn, you must understand why it works
before you use it.
• Creating Synthetic Examples: When using SMOTE or other methods to generate
synthetic data, ensure that only real data is used in the validation and test sets.
- If using synthetic data, make sure your validation set and test set mirrors the true
class proportions from the original dataset. A balanced test set for naturally unbalanced
 data can give misleading impressions of your model’s real-world performance.
For more details, see: Handling Imbalanced Classes
• Working with Time Series Data: For insights on working with time series data,
visit: NIST Handbook on Time Series
• Handling Missing Feature Values:
– See Lecture 16 at Stanford STATS 306B
– Techniques to Handle Missing Data Values
– How to Handle Missing Data in Python
– Statistical Imputation for Missing Data
• Multiclass Classification:
– Understanding Softmax in Multiclass Classification
– Precision and Recall for Multiclass Metrics
• Optimizers for Neural Networks: You may use Adam or other optimizers for
training neural networks.
• Centering Image Data with Bounding Boxes: If you are working with image
data, you are allowed to use bounding boxes to center the objects in your images. You
can use libraries like OpenCV (‘cv2’).
Tips
Don’t forget to scale your data as part of preprocessing. Be sure to document any modifications
 you made, including the scaling or normalization techniques you applied.
The following resource might be helpful. Please stick to topics we discussed in class or
those mentioned above: CS229: Practical Machine Learning Advice

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓萊特省旅游經濟好嗎(景點推薦)
  • 下一篇:ENG6編程代寫、代做MATLAB語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美日韩在线视频一区二区| 激情小说亚洲一区| 欧美日韩成人在线播放| 欧美88av| 久久综合中文| 久久天天躁狠狠躁夜夜av| 欧美日韩一视频区二区| 欧美精品久久久久久久免费观看| 欧美成人激情在线| 欧美激情一区二区| 国产精品草莓在线免费观看| 国产精品三区www17con| 国产一区视频观看| 伊人影院久久| 99国产精品自拍| 亚洲在线播放| 久久九九国产精品怡红院| 久久久综合激的五月天| 欧美成人tv| 欧美无乱码久久久免费午夜一区| 国产精品老牛| 在线观看亚洲精品视频| 99pao成人国产永久免费视频| 日韩视频在线一区二区| 亚洲欧美三级在线| 久久久亚洲一区| 欧美喷潮久久久xxxxx| 国产精品高潮呻吟视频| 国产午夜一区二区三区| 亚洲国产精品视频一区| 亚洲一本视频| 久久久久久久精| 欧美精品久久久久久久久久| 国产精品综合色区在线观看| 伊人久久男人天堂| 一区二区三区精品视频| 久久国产精品久久精品国产| 欧美国产精品日韩| 国产伦精品一区二区三区视频孕妇 | 欧美国产先锋| 国产麻豆视频精品| 亚洲日本电影| 欧美一区日韩一区| 欧美久久久久久久| 国产主播喷水一区二区| 99精品欧美| 久久精品视频播放| 欧美日韩一区在线视频| 精品88久久久久88久久久| 在线亚洲电影| 欧美成人国产| 国产一区二区在线免费观看 | 亚洲欧美日韩区| 欧美韩日精品| 国产一区成人| 亚洲性视频h| 欧美精品一区二区高清在线观看| 国产亚洲精品久久久| 中日韩高清电影网| 欧美不卡在线| 国模套图日韩精品一区二区| 在线视频中文亚洲| 免费久久99精品国产自在现线| 国产欧美一区二区三区在线看蜜臀 | 亚洲在线观看视频| 欧美精品久久一区二区| 亚洲成色精品| 久久国产一区| 国产欧美一区二区精品秋霞影院| 野花国产精品入口| 欧美成人a∨高清免费观看| 狠狠色丁香久久婷婷综合_中| 亚洲一区二区三区四区在线观看| 欧美激情视频一区二区三区不卡| 激情婷婷亚洲| 久久九九久精品国产免费直播| 国产精品海角社区在线观看| 一本久道综合久久精品| 欧美国产欧美亚洲国产日韩mv天天看完整| 国产综合精品| 久久精品人人| 国产原创一区二区| 久久国产精品久久国产精品| 国产日韩精品一区二区三区| 亚洲免费婷婷| 国产精品久久毛片a| 一本一本久久a久久精品综合麻豆| 欧美成年人视频网站| 在线日韩成人| 久久综合中文| 亚洲国产成人av好男人在线观看| 久久久一区二区| 黑人中文字幕一区二区三区| 欧美在线中文字幕| 国产一区二区丝袜高跟鞋图片| 欧美一级视频免费在线观看| 国产视频一区在线观看| 欧美中文字幕精品| 国产一区二区在线免费观看| 久久久久久成人| 亚洲二区三区四区| 欧美韩日一区二区| 99精品视频免费观看| 欧美日韩一区二区三区在线| 亚洲淫性视频| 国产一区二区三区电影在线观看| 久久男人资源视频| 亚洲欧洲日韩综合二区| 欧美理论在线播放| 亚洲在线免费观看| 国产一区在线看| 久久婷婷成人综合色| 亚洲精品1区2区| 欧美日韩在线一区二区| 欧美先锋影音| 亚洲精品韩国| 欧美少妇一区| 午夜精品久久久久久久久久久| 国产日韩欧美一区| 久久综合九色综合欧美就去吻| 亚洲人体大胆视频| 国产精品久久激情| 欧美一区二区三区在线播放| 激情综合色丁香一区二区| 欧美大片网址| 亚洲在线观看| 影音欧美亚洲| 欧美少妇一区| 久久精品成人一区二区三区 | 亚洲欧美怡红院| 在线成人h网| 欧美日韩另类综合| 欧美在线在线| 日韩午夜在线电影| 国产亚洲精品激情久久| 欧美国产日韩精品| 亚洲欧美伊人| 亚洲欧洲在线一区| 国产欧美二区| 欧美精品一区二区三区蜜臀| 欧美一级片久久久久久久| 最新高清无码专区| 国产精品自拍一区| 欧美国内亚洲| 久久精品成人欧美大片古装| 日韩一区二区免费看| 国内精品视频666| 欧美日韩在线不卡| 猫咪成人在线观看| 亚洲欧美一区二区激情| **欧美日韩vr在线| 国产精品一级二级三级| 欧美成人一二三| 久久精品日产第一区二区| 一本色道久久综合亚洲精品按摩| 国产一区二区三区直播精品电影| 欧美色图一区二区三区| 蜜桃精品一区二区三区 | 国产精品久久久久久久久久久久| 久久尤物视频| 欧美在线免费一级片| 一区二区欧美在线观看| 亚洲第一页在线| 国产日韩综合| 欧美午夜女人视频在线| 欧美成人免费全部| 久久久国产一区二区| 亚洲欧美电影在线观看| av成人国产| 亚洲精品中文字幕在线观看| 一区二区在线视频| 国产亚洲va综合人人澡精品| 国产精品毛片va一区二区三区 | 在线日韩av永久免费观看| 国产日韩欧美精品一区| 国产精品久久午夜| 欧美日韩在线精品| 欧美激情欧美激情在线五月| 久久躁日日躁aaaaxxxx| 久久精品视频在线观看| 欧美一区亚洲二区| 午夜国产精品视频| 亚洲免费在线电影| 亚洲自拍偷拍福利| 中文在线一区| 亚洲一区二区久久| 亚洲系列中文字幕| 亚洲一本大道在线| 亚洲一卡久久| 亚洲欧美国产不卡| 午夜久久tv| 欧美在线观看一区二区| 欧美在线免费| 久久久国产一区二区三区| 久久―日本道色综合久久| 久久综合伊人| 欧美sm重口味系列视频在线观看| 牛牛影视久久网| 欧美精品一区二区在线播放| 欧美日韩国产成人在线91|