合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        MATH2033代做、代寫Java,Python編程
        MATH2033代做、代寫Java,Python編程

        時間:2024-12-19  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        MATH2033 Introduction to Scientific Computation
        — Coursework 2 —
        Submission deadline: 15:00 Friday 20 December 2024
        This coursework contributes 10% towards your mark for this module.
        Rules
        It is not permitted to use generative artificial intelligence (AI) software for this coursework. Ensure that
        you have read and have understood the Policy on academic misconduct. One of the things stated in
        this policy is that “The submission of work that is generated and/or improved by software that is not
        permitted for that assessment, for the purpose of gaining marks will be regarded as false authorship
        and seen as an attempt to gain an unpermitted academic advantage”.
        This coursework should be your own individual work, with the exceptions that:
        1. You may ask for and receive help from the lecturer Richard Rankin although not all questions will be
        answered and those that are will be answered to all students that attend the class.
        2. You may copy from material provided on the Moodle pages:
        • Introduction to Scientific Computation (MATH2033 UNNC) (FCH1 24-25)
        • Analytical and Computational Foundations (MATH1028 UNNC) (FCH1 2**4)
        • Calculus (MATH1027 UNNC) (FCH1 2**4)
        • Linear Mathematics (MATH1030 UNNC) (FCH1 2**4)
        Coding Environment
        You should write and submit a py file. You are strongly encouraged to use the Spyder IDE (integrated
        development environment). You should not write or submit an ipynb file and so you should not use
        Jupyter Notebook.
        It will be assumed that numpy is imported as np, and that matplotlib.pyplot is imported as plt.
        Submission Procedure:
        To submit, upload your linear systems.py file through the Coursework 2 assignment activity in the
        Coursework 2 section of the Moodle page Introduction to Scientific Computation (MATH2033 UNNC)
        (FCH1 24-25).
        Marking
        Your linear systems.py file will be mainly marked by running your functions with certain inputs and comparing
         the output with the correct output.
        Department of Mathematical Sciences Page 1 of 51. The linear systems.py file contains an unfinished function with the following first line:
        def smax (w ,s , i ) :
        Assume that:
        • The type of the input w is numpy.ndarray.
        • The type of the input s is numpy.ndarray.
        • The type of the input i is int.
        • There exists an int n such that the shape of w is (n,) and the shape of s is (n,).
        • The input i is a nonnegative integer that is less than n.
        Complete the function smax so that it returns an int p which is the smallest integer for which
        i ≤ p < n
        and
        |w[p]|
        s[p]
         = max
        j∈{i,i+1,...,n−1}
        |w[j]|
        s[j]
        .
        A test that you can perform on your function smax is to run the Question 1 cell of the tests.py file
        and check that what is printed is:
        1
        [20 marks]
        Coursework 2 Page 2 of 52. Suppose that A ∈ R
        n×n, that det(A) 6= 0 and that b ∈ R
        n.
        The linear systems.py file contains an unfinished function with the following first line:
        def spp (A ,b , c ) :
        Assume that:
        • The type of the input A is numpy.ndarray.
        • The type of the input b is numpy.ndarray.
        • The type of the input c is int.
        • There exists an int n such that n > 1, the shape of A is (n,n) and the shape of b is (n,1).
        • The input A represents A.
        • The input b represents b.
        • The input c is a positive integer that is less than n.
        Complete the function spp so that it returns a tuple (U, v) where:
        • U is a numpy.ndarray with shape (n,n) that represents the matrix comprised of the first n
        columns of the matrix arrived at by performing forward elimination with scaled partial pivoting
        on the matrix 
        A b 
        until all of the entries below the main diagonal in the first c columns are
        0.
        • v is a numpy.ndarray with shape (n,1) that represents the last column of the matrix arrived at
        by performing forward elimination with scaled partial pivoting on the matrix 
        A b 
        until all of
        the entries below the main diagonal in the first c columns are 0.
        A test that you can perform on your function spp is to run the Question 2 cell of the tests.py file
        and check that what is printed is:
        [[ 10. 0. 20.]
        [ 0. -5. -1.]
        [ 0. 10. -11.]]
        [[ 70.]
        [ -13.]
        [ -13.]]
        [30 marks]
        Coursework 2 Page 3 of 53. Suppose that A ∈ R
        n×n, that det(A) 6= 0, that all of the entries on the main diagonal of A are
        nonzero and that b ∈ R
        n. Let x ∈ R
        n be the solution to Ax = b. Let x
        (k) be the approximation
        to x obtained after performing k iterations of the Gauss–Seidel method starting with the initial
        approximation x
        (0)
        .
        The linear systems.py file contains an unfinished function with the following first line:
        def GS (A ,b ,g ,t , N ) :
        Assume that:
        • The type of the input A is numpy.ndarray.
        • The type of the input b is numpy.ndarray.
        • The type of the input g is numpy.ndarray.
        • The type of the input t is numpy.float64, float or int.
        • The type of the input N is int.
        • There exists an int n such that the shape of A is (n,n), the shape of b is (n,1) and the shape
        of g is (n,1).
        • The input A represents A.
        • The input b represents b.
        • The input g represents x
        (0)
        .
        • The input t is a real number.
        • The input N is a nonnegative integer.
        Complete the function GS so that it returns a tuple (y, r) where:
        • y is a numpy.ndarray with shape (n, M + 1) which is such that, for j = 0, 1, . . . , n − 1,
        y[j, k] =x
        (k)
        j+1 for k = 0, 1, . . . , M where M is the smallest nonnegative integer less than N for
        which
        is less than t if such an integer M exists and M = N otherwise.
        • r is a bool which is such that r = True if
        is less than t and r = False otherwise.
        A test that you can perform on your function GS is to run the Question 3 cell of the tests.py file and
        check that what is printed is:
        [[ 0. 12. 12.75 ]
        [ 0. 3. 3.9375 ]
        [ 0. 6.75 6.984375]]
        False
        [25 marks]
        Coursework 2 Page 4 of 54. Suppose that A ∈ R
        n×n, that det(A) 6= 0, that all of the entries on the main diagonal of A are
        nonzero and that b ∈ R
        n. Let x ∈ R
        n be the solution to Ax = b. Let x
        (k) be the approximation
        to x obtained after performing k iterations of the Gauss–Seidel method starting with the initial
        approximation x
        (0)
        .
        The linear systems.py file contains an unfinished function with the following first line:
        def GS_plot (A ,b ,g ,x , N ) :
        Assume that:
        • The type of the input A is numpy.ndarray.
        • The type of the input b is numpy.ndarray.
        • The type of the input g is numpy.ndarray.
        • The type of the input x is numpy.ndarray.
        • The type of the input N is int.
        • There exists an int n such that the shape of A is (n,n), the shape of b is (n,1), the shape of g
        is (n,1) and the shape of x is (n,1).
        • The input A represents A.
        • The input b represents b.
        • The input g represents x
        (0)
        .
        • The input x represents x.
        • The input N is a nonnegative integer.
        Complete the function GS plot so that it returns a matplotlib.figure.Figure, with an appropriate
        legend and a single pair of appropriately labelled axes, on which there is a semilogy plot
        of:
        A test that you can perform on your function GS plot is to run the Question 4 cell of the tests.py
        file.
        [25 marks]
        Coursework 2 Page 5 of 5

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:代做COMP2012J、java編程語言代寫
      2. 下一篇:DSCI 510代寫、代做Python編程語言
      3. ·代做DI11004、Java,Python編程代寫
      4. ·03CIT4057代做、代寫c++,Python編程
      5. ·代寫CHEE 4703、代做Java/Python編程設(shè)計
      6. ·代做INT2067、Python編程設(shè)計代寫
      7. ·CS 7280代做、代寫Python編程語言
      8. ·CSCI 201代做、代寫c/c++,Python編程
      9. ·代寫G6077程序、代做Python編程設(shè)計
      10. ·代做COMP SCI 7412、代寫Java,python編程
      11. ·代做COMP642、代寫Python編程設(shè)計
      12. ·代寫CSSE7030、代做Python編程設(shè)計
      13. 合肥生活資訊

        合肥圖文信息
        挖掘機(jī)濾芯提升發(fā)動機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動機(jī)性能
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)400(全國服務(wù)熱線)
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時服務(wù)熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士3號線
        合肥機(jī)場巴士3號線
        合肥機(jī)場巴士2號線
        合肥機(jī)場巴士2號線
      14. 幣安app官網(wǎng)下載 短信驗證碼 丁香花影院

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 精品一区二区三区在线成人| 合区精品久久久中文字幕一区| 亚洲国产AV一区二区三区四区 | 精品国产一区二区三区免费看| 波多野结衣AV无码久久一区| 日韩美女视频一区| 天堂va在线高清一区| 搜日本一区二区三区免费高清视频 | 色偷偷av一区二区三区| 区三区激情福利综合中文字幕在线一区亚洲视频1 | 日韩人妻精品一区二区三区视频| 精品国产福利在线观看一区| 91国偷自产一区二区三区| 蜜桃无码一区二区三区| 麻豆一区二区99久久久久| 日韩精品在线一区二区| 国产成人无码一区二区三区| 国产不卡视频一区二区三区| 日韩精品无码久久一区二区三| 成人精品一区二区激情| 人妻少妇精品视频三区二区一区 | 亚洲综合无码AV一区二区| 一本色道久久综合一区 | 亚洲一区在线视频| 少妇激情av一区二区| 台湾无码一区二区| 中文字幕精品一区二区日本| 91久久精品国产免费一区| 88国产精品视频一区二区三区| 91精品乱码一区二区三区| 无码少妇一区二区浪潮免费| 精品国产一区二区二三区在线观看 | 久久精品国产第一区二区| 真实国产乱子伦精品一区二区三区| 中文字幕一区二区三区精华液| 国产一区二区三区精品视频| 久久久精品人妻一区二区三区 | 91精品一区二区三区久久久久| 亚洲国产AV一区二区三区四区 | 亚洲av乱码一区二区三区香蕉| 无码人妻久久一区二区三区免费丨|