合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫EE5434、代做c/c++,Java程序
        代寫EE5434、代做c/c++,Java程序

        時間:2024-12-06  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        EE5434 final project 
         
        Data were available on Nov. 5 (see the Kaggle website) 
        Report and source codes due: 11:59PM, Dec. 6th 
        Full mark: 100 pts. 
         
        During the process, you can keep trying new machine learning models and boost the learning 
        accuracy. 
         
        You are encouraged to form groups of size 2 with your classmates so that the team can 
        implement multiple learning models and compare their performance. If you cannot find any 
        partners, please send a message on the group discussion board and briefly introduce your 
        expertise. If you prefer to do this project yourself, you can get 5 bonus points. 
         
        Submission format: Report should be in PDF format. Source code should be in a notebook file 
        (.ipynb) and also save your source code as a HTML file (.html). Thus, there are three files you 
        need to upload to Canvas. Remember that you should not copy anyone’s codes, which can lead 
        to faisure of this course. 
         
        Files and naming rules: If you have two members in the team, start the file name with G2, 
        otherwise, G1. For example, you have a teammate and the team members are: Jackie Lee and 
        Xuantian Chan, name it as G2-Lee-Chan.xxx. 5 pts will be deducted if the naming rule is not 
        followed. In your report, please clearly show the group members. 
         
        How do we grade your report? We will consider the following factors. 
         
         1. You would get 30% (basic grade) if you correctly applied two learning models to our 
        classification problem. The accuracy should be much better than random guess. Your 
        report is written in generally correct English and is easy to follow. Your report should 
        include clear explanation of your implementation details and basic analysis of the 
        results. 
        2. Factors in grading: 
        a. Applied/implemented and compared at least 2 different models. You show good 
        sense in choosing appropriate models (such as some NLP related models). 
        b. For each model, clear explanation of the feature encoding methods, model 
        structure, etc. Carefully tuned multiple sets of parameters or feature engineering 
        methods. Provided evidence of multiple methods to boost the performance. 
        c. Consider performance metrics beyond accuracy (such as confusion matrix, recall, 
        ROC, etc.). Carefully compare the performance of different 
        methods/models/parameter sets. Being able to present your results using the most 
        insightful means such as tables/figures etc. 
        d. Well-written reports that are easy to follow/read. 
        e. Final ranking on Kaggle.  For each of the factor, we have unsatisfactory (1), acceptable (2), satisfactory (3), good (4), 
        excellent (5). The sum of each factor will determine the grade. For example, student A got 4 
        good and 1 acceptable for a to e. Then, A’s total score is 4*4+2=16. The full mark for a to e is 
        25. So, A’s percentage is 64%. 
         
         
        Note that if the final performance is very close (e.g. 0.65 vs 0.66), the corresponding 
        submissions belong to the same group in the ranking. 
         
        Factors that can increase your grade: 
        1. You used a new learning model/feature engineering method that was not taught in 
        class. This requires some reading and clear explanation why you think this model fits this 
        problem. 
        2. Your model’s performance is much better than others because of a new or optimized 
        method. 
         
        The format of the report 
        1. There is no page limit for the report. If you don’t have much to report, keep it simple. 
        Also, miminize the language issues by proofreading. 
        2. To make our grading more standard, please use the following sections: 
        a. Abstract. Summarize the report (what you done, what methods you use and the 
        conclusions). (less than 300 words) 
        b. Data properties (data explortary analysis). You should describe your 
        understanding/analysis of the data properties. 
        c. Methods/models. In this section, you should describe your implemented models. 
        Provide key parameters. For example, what are the features? If you use kNN, 
        what is k and how you computed the distance? If you use ANN, what is the 
        architecture, etc. You should separate the high-level description of the models 
        and the tuning of hyper-parameters. 
        d. Experimental results. In this section, compare and summarize the results using 
        appropriate tables/figures. Simplying copying screening is acceptable but will 
        lead to low mark for sure. Instead, you should *summarize* your results. You 
        can also compare the performance of your model under different 
        hyperparameters. 
        e. Conclusion and discussion. Discussion why your models perform well or poorly. 
        f. Future work. Discuss what you could do if more time is given. 
        3. For each model you tried, provide the codes of the model with the best performance. In 
        your report, you can detail the performance of this model with different parameters. 
         
        The code 
        The code should include: 
        1. Preprocessing of the data 2. Construction of the model 
        3. Training 
        4. Validation 
        5. Testing 
        6. And other code that is necessary 
         
        This is the link that you need to use to join the competition. 
        https://www.kaggle.com/t/79178536956041b8acb64b6268afb4de 
         
         
         
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機打開當前頁
      1. 上一篇:代寫ENGG1110、代做C++語言編程
      2. 下一篇:COMP2010J代做、代寫c/c++,Python程序
      3. ·MS3251代寫、代做Python/Java程序
      4. ·COMP4134代做、Java程序語言代寫
      5. ·代寫ENG4200、Python/Java程序設計代做
      6. ·代寫I&C SCI 46 、c/c++,Java程序語言代做
      7. ·CCIT4020代做、代寫c/c++,Java程序設計
      8. ·代寫COMP2011J、Java程序設計代做
      9. ·IS3240代做、代寫c/c++,Java程序語言
      10. ·代寫CSE x25、C++/Java程序設計代做
      11. ·代寫program、代做c++,Java程序語言
      12. · 代寫MCEN30017、代做C++,Java程序
      13. 合肥生活資訊

        合肥圖文信息
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
      14. 幣安app官網下載 短信驗證碼

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 亚洲av无码一区二区三区在线播放| 国语精品一区二区三区| 一区二区免费电影| 精品深夜AV无码一区二区| 久久久久无码国产精品一区| 久久久久久一区国产精品| 久久精品亚洲一区二区三区浴池| 亚洲色精品VR一区区三区| 国产aⅴ精品一区二区三区久久| 亚洲一区无码精品色| 午夜福利一区二区三区在线观看| 曰韩人妻无码一区二区三区综合部| 国产在线一区二区| 无码一区二区三区视频| 视频一区二区三区在线观看| 国产丝袜美女一区二区三区| 精品一区二区三区四区在线播放 | 亚洲A∨精品一区二区三区| 丝袜无码一区二区三区| 日韩一区二区三区无码影院 | 视频一区二区在线观看| 亚洲一区AV无码少妇电影☆| 亚洲制服丝袜一区二区三区| 久久青青草原一区二区| 高清一区二区在线观看| 成人区精品人妻一区二区不卡 | 香蕉久久av一区二区三区| 亚洲高清美女一区二区三区| 精品无码人妻一区二区三区品 | 国产精品视频一区二区三区不卡| 精品人妻少妇一区二区三区在线 | 伊人精品视频一区二区三区| 红桃AV一区二区三区在线无码AV| 亚洲综合国产一区二区三区| 国产激情无码一区二区| 竹菊影视欧美日韩一区二区三区四区五区 | 福利一区二区在线| 久久无码人妻精品一区二区三区| 制服丝袜一区二区三区| 在线视频一区二区| 国产一区二区影院|