合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫ENG4200、Python/Java程序設(shè)計代做
        代寫ENG4200、Python/Java程序設(shè)計代做

        時間:2024-11-24  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        Coursework 2: Neural networks 
        ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
        1. Key Information 
        • Worth 30% of overall grade 
        • Submission 1 (/2): Report submission 
        • Deadline uploaded on Moodle 
        • Submission 2 (/2): Code submission to CodeGrade 
        • Deadline uploaded on Moodle (the same as for report) 
        2. Training data 
        The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
        feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
        19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
        fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
        maximum flow possible between nodes 12 and 2. 
         
        Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
        dataset; you must not generate additional training dataset to train your neural network. 
         3. What you will do 
        You have to create and train a neural network with the following requirement/note: 
        • Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
        created by performing maximum flow analysis over the network in Figure 1. 
        • The accuracy on a hidden test dataset will be evaluated by a customised function as 
        follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
        fields share the rest 50% (you may design your loss function accordingly): 
         
         
         You should prepare two submissions, code submission and report submission. In blue colour are 
        assessment criteria. 
        • Code submission should include two files (example code uploaded on Moodle): 
        o A .py file with two functions 
        ▪ demo_train demonstrates the training process for a few epochs. It has three 
        inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
        training output data (.csv), and (3) the number of epochs. It needs to do two 
        things: (1) it needs to print out a graph with two curves of training and 
        validation accuracy, respectively; and (2) save the model as .keras file. 
        ▪ predict_in_df makes predictions on a provided feature data. It has two 
        inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
        of the feature data (.csv). It needs to return the predictions by the NN model 
        as a dataframe that has the same format as ‘train_Y’. 
        o A .keras file of your trained model 
        ▪ This will be used to test the hidden test dataset on CodeGrade. 
         
        o You can test your files on CodeGrade. There is no limit in the number of 
        submissions on CodeGrade until the deadline. 
         
        o Assessment criteria 
        ▪ 5% for the code running properly addressing all requirements. 
        ▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
        second highest accuracy, and 5% (out of 10%) for the rest. 
         
        • Report submission should be at maximum 2 pages on the following three questions and 
        one optional question: 
        o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
        rate, etc.): how did you test different values, what insights have you obtained, and 
        how did you decide the final setting of your model? 
        o How did you address overfitting and imbalanced datasets? 
        o How did you decide your loss function? 
        o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
        such as graphical neural network and/or transformer)? 
         
        o [Formatting] Neither cover page nor content list is required. Use a plain word 
        document with your name and student ID in the first line. 
         
        o Assessment criteria 
        ▪ 5% for each of the questions, evaluated by technical quality AND 
        writing/presentation 
        ▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
        or Physics-Informed Neural Network using physical relationships e.g. that 
        the flows going in and out of a node should be balanced) that go beyond 
        what we learned in classroom will earn not only the top marks for report, but 
        also (unless the accuracy is terribly off) will earn a full 10% mark for 
        accuracy in the code submission part. If you have made such attempts, don’t 
        forget to highlight your efforts on the report. 
         
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當前頁
      1. 上一篇:CS1026A代做、Python設(shè)計程序代寫
      2. 下一篇:代寫ECE 36800、代做Java/Python語言編程
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)400(全國服務(wù)熱線)
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時服務(wù)熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
      4. 幣安app官網(wǎng)下載 短信驗證碼

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 一区二区在线观看视频| 日本亚洲成高清一区二区三区| 亚洲国产AV一区二区三区四区| 老鸭窝毛片一区二区三区| 精品国产一区二区三区久久蜜臀| 亚洲国产成人精品无码一区二区| 国产成人av一区二区三区在线| 亚洲天堂一区在线| 国产一在线精品一区在线观看| 日韩美一区二区三区| 久久精品国产AV一区二区三区| 日韩综合无码一区二区| 色一情一乱一伦一区二区三区| 亚洲欧洲无码一区二区三区| 亚洲狠狠狠一区二区三区| 国产成人精品一区二区三区免费| 久久无码精品一区二区三区| 一区二区三区内射美女毛片| 国产精品成人一区二区三区| 日韩AV无码一区二区三区不卡| 亚洲av色香蕉一区二区三区蜜桃| 国产精品揄拍一区二区| 国产午夜精品一区二区三区小说| 日韩精品无码一区二区三区四区| 国产成人一区二区三区视频免费| 日本精品少妇一区二区三区| 亚洲高清毛片一区二区| 国产福利一区二区三区在线视频| 久久久老熟女一区二区三区| 奇米精品一区二区三区在线观看| 国产在线精品一区二区中文| 色老板在线视频一区二区| 国产在线无码一区二区三区视频| 国产精品视频一区二区三区四 | 久久久无码一区二区三区| 久久精品一区二区三区AV| 另类国产精品一区二区| 午夜性色一区二区三区不卡视频| 日韩在线视频一区二区三区| 亚洲国产成人久久一区WWW | 久久国产一区二区|