合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫ENG4200、Python/Java程序設(shè)計(jì)代做
        代寫ENG4200、Python/Java程序設(shè)計(jì)代做

        時(shí)間:2024-11-24  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Coursework 2: Neural networks 
        ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
        1. Key Information 
        • Worth 30% of overall grade 
        • Submission 1 (/2): Report submission 
        • Deadline uploaded on Moodle 
        • Submission 2 (/2): Code submission to CodeGrade 
        • Deadline uploaded on Moodle (the same as for report) 
        2. Training data 
        The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
        feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
        19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
        fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
        maximum flow possible between nodes 12 and 2. 
         
        Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
        dataset; you must not generate additional training dataset to train your neural network. 
         3. What you will do 
        You have to create and train a neural network with the following requirement/note: 
        • Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
        created by performing maximum flow analysis over the network in Figure 1. 
        • The accuracy on a hidden test dataset will be evaluated by a customised function as 
        follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
        fields share the rest 50% (you may design your loss function accordingly): 
         
         
         You should prepare two submissions, code submission and report submission. In blue colour are 
        assessment criteria. 
        • Code submission should include two files (example code uploaded on Moodle): 
        o A .py file with two functions 
        ▪ demo_train demonstrates the training process for a few epochs. It has three 
        inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
        training output data (.csv), and (3) the number of epochs. It needs to do two 
        things: (1) it needs to print out a graph with two curves of training and 
        validation accuracy, respectively; and (2) save the model as .keras file. 
        ▪ predict_in_df makes predictions on a provided feature data. It has two 
        inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
        of the feature data (.csv). It needs to return the predictions by the NN model 
        as a dataframe that has the same format as ‘train_Y’. 
        o A .keras file of your trained model 
        ▪ This will be used to test the hidden test dataset on CodeGrade. 
         
        o You can test your files on CodeGrade. There is no limit in the number of 
        submissions on CodeGrade until the deadline. 
         
        o Assessment criteria 
        ▪ 5% for the code running properly addressing all requirements. 
        ▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
        second highest accuracy, and 5% (out of 10%) for the rest. 
         
        • Report submission should be at maximum 2 pages on the following three questions and 
        one optional question: 
        o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
        rate, etc.): how did you test different values, what insights have you obtained, and 
        how did you decide the final setting of your model? 
        o How did you address overfitting and imbalanced datasets? 
        o How did you decide your loss function? 
        o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
        such as graphical neural network and/or transformer)? 
         
        o [Formatting] Neither cover page nor content list is required. Use a plain word 
        document with your name and student ID in the first line. 
         
        o Assessment criteria 
        ▪ 5% for each of the questions, evaluated by technical quality AND 
        writing/presentation 
        ▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
        or Physics-Informed Neural Network using physical relationships e.g. that 
        the flows going in and out of a node should be balanced) that go beyond 
        what we learned in classroom will earn not only the top marks for report, but 
        also (unless the accuracy is terribly off) will earn a full 10% mark for 
        accuracy in the code submission part. If you have made such attempts, don’t 
        forget to highlight your efforts on the report. 
         
        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:CS1026A代做、Python設(shè)計(jì)程序代寫
      2. 下一篇:代寫ECE 36800、代做Java/Python語言編程
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評(píng) 開團(tuán)工具
        出評(píng) 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線)
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
      4. 上海廠房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        主站蜘蛛池模板: 国产在线第一区二区三区| 国产一区二区电影| 精品无码一区二区三区水蜜桃| 亚洲av色香蕉一区二区三区| 日本在线观看一区二区三区| 日韩人妻精品无码一区二区三区| 国产一区二区三区不卡在线看 | 国产精品99精品一区二区三区| 成人区精品人妻一区二区不卡| 一区二区不卡久久精品| 天堂一区二区三区在线观看| 无码人妻一区二区三区在线 | 真实国产乱子伦精品一区二区三区 | 亚洲码欧美码一区二区三区| 少妇人妻精品一区二区三区| 免费看一区二区三区四区| 激情爆乳一区二区三区| 韩国一区二区三区视频| 另类国产精品一区二区| 亚洲视频一区二区在线观看| 亚洲国产精品一区二区久久hs| 熟女大屁股白浆一区二区| AV天堂午夜精品一区| 国产一区二区三区夜色| 中文字幕国产一区| 国产成人精品无码一区二区三区 | 久久精品道一区二区三区| 中文无码精品一区二区三区| 三上悠亚一区二区观看| 亚洲国产av一区二区三区| 国产av一区最新精品| 国产精品久久无码一区二区三区网| 亚洲欧美日韩一区二区三区 | 中文乱码人妻系列一区二区| 国内自拍视频一区二区三区| 亚洲日韩中文字幕无码一区| 日本精品3d动漫一区二区| 亚洲国产精品一区二区九九| 国产一区二区三区不卡观| 中文字幕一区二区三区久久网站| 精品无码一区二区三区电影|