99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫CPTG1405、代做Python設(shè)計(jì)程序
代寫CPTG1405、代做Python設(shè)計(jì)程序

時(shí)間:2024-11-14  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Assignment 2
CPTG1405, Trimester 3, 2024
1. General matter
1.1. Aims. The purpose of the assignment is to:
• design and implement an interface based on the desired behaviour of an application program;
• practice the use of Python syntax;
• develop problem solving skills.
1.2. Submission. Your program will be stored in a file n amed p olygons.py. A fter y ou h ave d eveloped and
tested your program, upload it using Ed (unless you worked directly in Ed). Assignments can be submitted
more than once; the last version is marked. Your assignment is due by November 11, 9:00am.
1.3. Assessment. The assignment is worth 13 marks. It is going to be tested against a number of input files.
For each test, the automarking script will let your program run for 30 seconds.
Assignments can be submitted up to 5 days after the deadline. The maximum mark obtainable reduces by
5% per full late day, for up to 5 days. Thus if students A and B hand in assignments worth 12 and 11, both
two days late (that is, more than 24 hours late and no more than 48 hours late), then the maximum mark
obtainable is 11.7, so A gets min(11.7, 11) = 11 and B gets min(11.7, 11) = 11. The outputs of your programs
should be exactly as indicated.
1.4. Reminder on plagiarism policy. You are permitted, indeed encouraged, to discuss ways to solve the
assignment with other people. Such discussions must be in terms of algorithms, not code. But you must
implement the solution on your own. Submissions are routinely scanned for similarities that occur when students
copy and modify other people’s work, or work very closely together on a single implementation. Severe penalties
apply.
2. General presentation
You will design and implement a program that will
• extract and analyse the various characteristics of (simple) polygons, their contours being coded and
stored in a file, and
• – either display those characteristics: perimeter, area, convexity, number of rotations that keep the
polygon invariant, and depth (the length of the longest chain of enclosing polygons)
– or output some Latex code, to be stored in a file, from which a pictorial representation of the
polygons can be produced, coloured in a way which is proportional to their area.
Call encoding any 2-dimensional grid of size between between 2 × 2 and 50 × 50 (both dimensions can be
different) all of whose elements are either 0 or 1.
Call neighbour of a member m of an encoding any of the at most eight members of the grid whose value is 1
and each of both indexes differs from m’s corresponding index by at most 1. Given a particular encoding, we
inductively define for all natural numbers d the set of polygons of depth d (for this encoding) as follows. Let a
natural number d be given, and suppose that for all d
0 < d, the set of polygons of depth d
0 has been defined.
Change in the encoding all 1’s that determine those polygons to 0. Then the set of polygons of depth d is
defined as the set of polygons which can be obtained from that encoding by connecting 1’s with some of their
neighbours in such a way that we obtain a maximal polygon (that is, a polygon which is not included in any
other polygon obtained from that encoding by connecting 1’s with some of their neighbours).
1
2
3. Examples
3.1. First example. The file polys_1.txt has the following contents:
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111
3
Here is a possible interaction:
$ python3
...
>>> from polygons import *
>>> polys = Polygons('polys_1.txt')
>>> polys.analyse()
Polygon 1:
Perimeter: 78.4
Area: 384.16
Convex: yes
Nb of invariant rotations: 4
Depth: 0
Polygon 2:
Perimeter: 75.2
Area: 353.44
Convex: yes
Nb of invariant rotations: 4
Depth: 1
Polygon 3:
Perimeter: 72.0
Area: **4.00
Convex: yes
Nb of invariant rotations: 4
Depth: 2
Polygon 4:
Perimeter: 68.8
Area: 295.84
Convex: yes
Nb of invariant rotations: 4
Depth: 3
Polygon 5:
Perimeter: 65.6
Area: 268.96
Convex: yes
Nb of invariant rotations: 4
Depth: 4
Polygon 6:
Perimeter: 62.4
Area: 243.36
Convex: yes
Nb of invariant rotations: 4
Depth: 5
Polygon 7:
Perimeter: 59.2
Area: 219.04
Convex: yes
Nb of invariant rotations: 4
Depth: 6
Polygon 8:
Perimeter: 56.0
Area: 196.00
Convex: yes
Nb of invariant rotations: 4
4
Depth: 7
Polygon 9:
Perimeter: 52.8
Area: 174.24
Convex: yes
Nb of invariant rotations: 4
Depth: 8
Polygon 10:
Perimeter: 49.6
Area: 153.76
Convex: yes
Nb of invariant rotations: 4
Depth: 9
Polygon 11:
Perimeter: 46.4
Area: 134.56
Convex: yes
Nb of invariant rotations: 4
Depth: 10
Polygon 12:
Perimeter: 43.2
Area: 116.64
Convex: yes
Nb of invariant rotations: 4
Depth: 11
Polygon 13:
Perimeter: 40.0
Area: 100.00
Convex: yes
Nb of invariant rotations: 4
Depth: 12
Polygon 14:
Perimeter: 36.8
Area: 84.64
Convex: yes
Nb of invariant rotations: 4
Depth: 13
Polygon 15:
Perimeter: 33.6
Area: 70.56
Convex: yes
Nb of invariant rotations: 4
Depth: 14
Polygon 16:
Perimeter: 30.4
Area: 57.76
Convex: yes
Nb of invariant rotations: 4
Depth: 15
Polygon 17:
Perimeter: 27.2
Area: 46.24
Convex: yes
Nb of invariant rotations: 4
5
Depth: 16
Polygon 18:
Perimeter: 24.0
Area: 36.00
Convex: yes
Nb of invariant rotations: 4
Depth: 17
Polygon 19:
Perimeter: 20.8
Area: 27.04
Convex: yes
Nb of invariant rotations: 4
Depth: 18
Polygon 20:
Perimeter: 17.6
Area: 19.36
Convex: yes
Nb of invariant rotations: 4
Depth: 19
Polygon 21:
Perimeter: 14.4
Area: 12.96
Convex: yes
Nb of invariant rotations: 4
Depth: 20
Polygon 22:
Perimeter: 11.2
Area: 7.84
Convex: yes
Nb of invariant rotations: 4
Depth: 21
Polygon 23:
Perimeter: 8.0
Area: 4.00
Convex: yes
Nb of invariant rotations: 4
Depth: 22
Polygon 24:
Perimeter: 4.8
Area: 1.44
Convex: yes
Nb of invariant rotations: 4
Depth: 23
Polygon 25:
Perimeter: 1.6
Area: 0.16
Convex: yes
Nb of invariant rotations: 4
Depth: 24
>>> polys.display()
6
The effect of executing polys.display() is to produce a file named polys_1.tex that can be given as
argument to pdflatex to produce a file named polys_1.pdf that views as follows.
7
3.2. Second example. The file polys_2.txt has the following contents:
00000000000000000000000000000000000000000000000000
01111111111111111111111111111111111111111111111110
00111111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111000
01001111111111111111111111111111111111111111110010
01100111111111111111111111111111111111111111100110
01110011111111111111111111111111111111111111001110
01111001111111111111111111111111111111111110011110
01111100111111111111111111111111111111111100111110
01111110011111111111111111111111111111111001111110
01111111001111111111111111111111111111110011111110
01111111100111111111111111111111111111100111111110
01111111110011111111111111111111111111001111111110
01111111111001111111111111111111111110011111111110
01111111111100111111111111111111111100111111111110
01111111111110011111111111111111111001111111111110
01111111111111001111111111111111110011111111111110
01111111111111100111111111111111100111111111111110
01111111111111110011111111111111001111111111111110
01111111111111111001111111111110011111111111111110
01111111111111111100111111111100111111111111111110
01111111111111111110011111111001111111111111111110
01111111111111111111001111110011111111111111111110
01111111111111111111100111100111111111111111111110
01111111111011111111110011001111111111011111111110
01111111111111111111100111100111111111111111111110
01111111111111111111001111110011111111111111111110
01111111111111111110011111111001111111111111111110
01111111111111111100111111111100111111111111111110
01111111111111111001111111111110011111111111111110
01111111111111110011111111111111001111111111111110
01111111111111100111111111111111100111111111111110
01111111111111001111111111111111110011111111111110
01111111111110011111111111111111111001111111111110
01111111111100111111111111111111111100111111111110
01111111111001111111111111111111111110011111111110
01111111110011111111111111111111111111001111111110
01111111100111111111111111111111111111100111111110
01111111001111111111111111111111111111110011111110
01111110011111111111111111111111111111111001111110
01111100111111111111111111111111111111111100111110
01111001111111111111111111111111111111111110011110
01110011111111111111111111111111111111111111001110
01100111111111111111111111111111111111111111100110
01001111111111111111111111111111111111111111110010
00011111111111111111111111111111111111111111111000
00111111111111111111111111111111111111111111111100
01111111111111111111111111111111111111111111111110
00000000000000000000000000000000000000000000000000
8
Here is a possible interaction:
$ python3
...
>>> from polygons import *
>>> polys = Polygons('polys_2.txt')
>>> polys.analyse()
Polygon 1:
Perimeter: 37.6 + 92*sqrt(.**)
Area: 176.64
Convex: no
Nb of invariant rotations: 2
Depth: 0
Polygon 2:
Perimeter: 17.6 + 42*sqrt(.**)
Area: **.92
Convex: yes
Nb of invariant rotations: 1
Depth: 1
Polygon 3:
Perimeter: 16.0 + 38*sqrt(.**)
Area: 60.80
Convex: yes
Nb of invariant rotations: 1
Depth: 2
Polygon 4:
Perimeter: 16.0 + 40*sqrt(.**)
Area: 64.00
Convex: yes
Nb of invariant rotations: 1
Depth: 0
Polygon 5:
Perimeter: 14.4 + 34*sqrt(.**)
Area: 48.96
Convex: yes
Nb of invariant rotations: 1
Depth: 3
Polygon 6:
Perimeter: 16.0 + 40*sqrt(.**)
Area: 64.00
Convex: yes
Nb of invariant rotations: 1
Depth: 0
Polygon 7:
Perimeter: 12.8 + 30*sqrt(.**)
Area: 38.40
Convex: yes
Nb of invariant rotations: 1
Depth: 4
Polygon 8:
Perimeter: 14.4 + 36*sqrt(.**)
Area: 51.84
Convex: yes
Nb of invariant rotations: 1
9
Depth: 1
Polygon 9:
Perimeter: 11.2 + 26*sqrt(.**)
Area: 29.12
Convex: yes
Nb of invariant rotations: 1
Depth: 5
Polygon 10:
Perimeter: 14.4 + 36*sqrt(.**)
Area: 51.84
Convex: yes
Nb of invariant rotations: 1
Depth: 1
Polygon 11:
Perimeter: 9.6 + 22*sqrt(.**)
Area: 21.12
Convex: yes
Nb of invariant rotations: 1
Depth: 6
Polygon 12:
Perimeter: 12.8 + ***sqrt(.**)
Area: 40.96
Convex: yes
Nb of invariant rotations: 1
Depth: 2
Polygon 13:
Perimeter: 8.0 + 18*sqrt(.**)
Area: 14.40
Convex: yes
Nb of invariant rotations: 1
Depth: 7
Polygon 14:
Perimeter: 12.8 + ***sqrt(.**)
Area: 40.96
Convex: yes
Nb of invariant rotations: 1
Depth: 2
Polygon 15:
Perimeter: 6.4 + 14*sqrt(.**)
Area: 8.96
Convex: yes
Nb of invariant rotations: 1
Depth: 8
Polygon 16:
Perimeter: 11.2 + 28*sqrt(.**)
Area: 31.36
Convex: yes
Nb of invariant rotations: 1
Depth: 3
Polygon 17:
Perimeter: 4.8 + 10*sqrt(.**)
Area: 4.80
Convex: yes
Nb of invariant rotations: 1
10
Depth: 9
Polygon 18:
Perimeter: 11.2 + 28*sqrt(.**)
Area: 31.36
Convex: yes
Nb of invariant rotations: 1
Depth: 3
Polygon 19:
Perimeter: 3.2 + 6*sqrt(.**)
Area: 1.92
Convex: yes
Nb of invariant rotations: 1
Depth: 10
Polygon 20:
Perimeter: 9.6 + 24*sqrt(.**)
Area: 23.04
Convex: yes
Nb of invariant rotations: 1
Depth: 4
Polygon 21:
Perimeter: 1.6 + 2*sqrt(.**)
Area: 0.**
Convex: yes
Nb of invariant rotations: 1
Depth: 11
Polygon 22:
Perimeter: 9.6 + 24*sqrt(.**)
Area: 23.04
Convex: yes
Nb of invariant rotations: 1
Depth: 4
Polygon 23:
Perimeter: 8.0 + 20*sqrt(.**)
Area: 16.00
Convex: yes
Nb of invariant rotations: 1
Depth: 5
Polygon 24:
Perimeter: 8.0 + 20*sqrt(.**)
Area: 16.00
Convex: yes
Nb of invariant rotations: 1
Depth: 5
Polygon 25:
Perimeter: 6.4 + 16*sqrt(.**)
Area: 10.24
Convex: yes
Nb of invariant rotations: 1
Depth: 6
Polygon 26:
Perimeter: 6.4 + 16*sqrt(.**)
Area: 10.24
Convex: yes
Nb of invariant rotations: 1
11
Depth: 6
Polygon 27:
Perimeter: 4.8 + 12*sqrt(.**)
Area: 5.76
Convex: yes
Nb of invariant rotations: 1
Depth: 7
Polygon 28:
Perimeter: 4.8 + 12*sqrt(.**)
Area: 5.76
Convex: yes
Nb of invariant rotations: 1
Depth: 7
Polygon 29:
Perimeter: 3.2 + 8*sqrt(.**)
Area: 2.56
Convex: yes
Nb of invariant rotations: 1
Depth: 8
Polygon 30:
Perimeter: 3.2 + 8*sqrt(.**)
Area: 2.56
Convex: yes
Nb of invariant rotations: 1
Depth: 8
Polygon 31:
Perimeter: 1.6 + 4*sqrt(.**)
Area: 0.64
Convex: yes
Nb of invariant rotations: 1
Depth: 9
Polygon **:
Perimeter: 1.6 + 4*sqrt(.**)
Area: 0.64
Convex: yes
Nb of invariant rotations: 1
Depth: 9
Polygon 33:
Perimeter: 17.6 + 42*sqrt(.**)
Area: **.92
Convex: yes
Nb of invariant rotations: 1
Depth: 1
Polygon 34:
Perimeter: 16.0 + 38*sqrt(.**)
Area: 60.80
Convex: yes
Nb of invariant rotations: 1
Depth: 2
Polygon 35:
Perimeter: 14.4 + 34*sqrt(.**)
Area: 48.96
Convex: yes
Nb of invariant rotations: 1
12
Depth: 3
Polygon 36:
Perimeter: 12.8 + 30*sqrt(.**)
Area: 38.40
Convex: yes
Nb of invariant rotations: 1
Depth: 4
Polygon 37:
Perimeter: 11.2 + 26*sqrt(.**)
Area: 29.12
Convex: yes
Nb of invariant rotations: 1
Depth: 5
Polygon 38:
Perimeter: 9.6 + 22*sqrt(.**)
Area: 21.12
Convex: yes
Nb of invariant rotations: 1
Depth: 6
Polygon 39:
Perimeter: 8.0 + 18*sqrt(.**)
Area: 14.40
Convex: yes
Nb of invariant rotations: 1
Depth: 7
Polygon 40:
Perimeter: 6.4 + 14*sqrt(.**)
Area: 8.96
Convex: yes
Nb of invariant rotations: 1
Depth: 8
Polygon 41:
Perimeter: 4.8 + 10*sqrt(.**)
Area: 4.80
Convex: yes
Nb of invariant rotations: 1
Depth: 9
Polygon 42:
Perimeter: 3.2 + 6*sqrt(.**)
Area: 1.92
Convex: yes
Nb of invariant rotations: 1
Depth: 10
Polygon 43:
Perimeter: 1.6 + 2*sqrt(.**)
Area: 0.**
Convex: yes
Nb of invariant rotations: 1
Depth: 11
>>> polys.display()
13
The effect of executing polys.display() is to produce a file named polys_2.tex that can be given as
argument to pdflatex to produce a file named polys_2.pdf that views as follows.
14
3.3. Third example. The file polys_3.txt has the following contents:
0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1
0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1
1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1
1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1
1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1
1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1
1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1
1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1
1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0
1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1
0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
15
Here is a possible interaction:
$ python3
...
>>> from polygons import *
>>> polys = Polygons('polys_3.txt')
>>> polys.analyse()
Polygon 1:
Perimeter: 2.4 + 9*sqrt(.**)
Area: 2.80
Convex: no
Nb of invariant rotations: 1
Depth: 0
Polygon 2:
Perimeter: 51.2 + 4*sqrt(.**)
Area: 117.28
Convex: no
Nb of invariant rotations: 2
Depth: 0
Polygon 3:
Perimeter: 2.4 + 9*sqrt(.**)
Area: 2.80
Convex: no
Nb of invariant rotations: 1
Depth: 0
Polygon 4:
Perimeter: 17.6 + 40*sqrt(.**)
Area: 59.04
Convex: no
Nb of invariant rotations: 2
Depth: 1
Polygon 5:
Perimeter: 3.2 + 28*sqrt(.**)
Area: 9.76
Convex: no
Nb of invariant rotations: 1
Depth: 2
Polygon 6:
Perimeter: 27.2 + 6*sqrt(.**)
Area: 5.76
Convex: no
Nb of invariant rotations: 1
Depth: 2
Polygon 7:
Perimeter: 4.8 + 14*sqrt(.**)
Area: 6.72
Convex: no
Nb of invariant rotations: 1
Depth: 1
Polygon 8:
Perimeter: 4.8 + 14*sqrt(.**)
Area: 6.72
Convex: no
Nb of invariant rotations: 1
16
Depth: 1
Polygon 9:
Perimeter: 3.2 + 2*sqrt(.**)
Area: 1.12
Convex: yes
Nb of invariant rotations: 1
Depth: 2
Polygon 10:
Perimeter: 3.2 + 2*sqrt(.**)
Area: 1.12
Convex: yes
Nb of invariant rotations: 1
Depth: 2
Polygon 11:
Perimeter: 2.4 + 9*sqrt(.**)
Area: 2.80
Convex: no
Nb of invariant rotations: 1
Depth: 0
Polygon 12:
Perimeter: 2.4 + 9*sqrt(.**)
Area: 2.80
Convex: no
Nb of invariant rotations: 1
Depth: 0
>>> polys.display()
The effect of executing polys.display() is to produce a file named polys_3.tex that can be given as
argument to pdflatex to produce a file named polys_3.pdf that views as follows.
17
3.4. Fourth example. The file polys_4.txt has the following contents:
1 1 101 11 0 1 1 1 0 1 1 1011 10 1 1 1 0 000 1 1 1 0 00 1 001 11 1
01 01000100010001000100100 110010010101001
100 0010 0 0 1 00 0 1 0 00 100 01000 100 0 1 01 0001011 1
1000101010101010101000100101010100010000
0100010001000100010000100010100011100011
100 1 0 0 0 10 0 0 1 00 0 1 00 01 010 000 0000 0 0 0 0 00 01 11
11101 1101110 1 1 1 0111011101100000001111000
000000000000000000000001100000011000100 0
1 111001100111111100000000111111000 010000
110 01 0 1 1 0 1011111100011111000000000001000
001 1000011 10 000000000 11111111111111111 00
18
Here is a possible interaction:
$ python3
...
>>> from polygons import *
>>> polys = Polygons('polys_4.txt')
>>> polys.analyse()
Polygon 1:
Perimeter: 11.2 + 28*sqrt(.**)
Area: 18.88
Convex: no
Nb of invariant rotations: 2
Depth: 0
Polygon 2:
Perimeter: 3.2 + 5*sqrt(.**)
Area: 2.00
Convex: no
Nb of invariant rotations: 1
Depth: 0
Polygon 3:
Perimeter: 1.6 + 6*sqrt(.**)
Area: 1.76
Convex: yes
Nb of invariant rotations: 1
Depth: 0
Polygon 4:
Perimeter: 3.2 + 1*sqrt(.**)
Area: 0.88
Convex: yes
Nb of invariant rotations: 1
Depth: 0
Polygon 5:
Perimeter: 4*sqrt(.**)
Area: 0.**
Convex: yes
Nb of invariant rotations: 4
Depth: 1
Polygon 6:
Perimeter: 4*sqrt(.**)
Area: 0.**
Convex: yes
Nb of invariant rotations: 4
Depth: 1
Polygon 7:
Perimeter: 4*sqrt(.**)
Area: 0.**
Convex: yes
Nb of invariant rotations: 4
Depth: 1
Polygon 8:
Perimeter: 4*sqrt(.**)
Area: 0.**
Convex: yes
Nb of invariant rotations: 4
19
Depth: 1
Polygon 9:
Perimeter: 1.6 + 1*sqrt(.**)
Area: 0.24
Convex: yes
Nb of invariant rotations: 1
Depth: 0
Polygon 10:
Perimeter: 0.8 + 2*sqrt(.**)
Area: 0.16
Convex: yes
Nb of invariant rotations: 2
Depth: 0
Polygon 11:
Perimeter: 12.0 + 7*sqrt(.**)
Area: 5.68
Convex: no
Nb of invariant rotations: 1
Depth: 0
Polygon 12:
Perimeter: 2.4 + 3*sqrt(.**)
Area: 0.88
Convex: no
Nb of invariant rotations: 1
Depth: 0
Polygon 13:
Perimeter: 1.6
Area: 0.16
Convex: yes
Nb of invariant rotations: 4
Depth: 0
Polygon 14:
Perimeter: 5.6 + 3*sqrt(.**)
Area: 1.36
Convex: no
Nb of invariant rotations: 1
Depth: 0
>>> polys.display()
The effect of executing polys.display() is to produce a file named polys_4.tex that can be given as
argument to pdflatex to produce a file named polys_4.pdf that views as follows.
20
4. Detailed description
4.1. Input. The input is expected to consist of ydim lines of xdim 0’s and 1’s, where xdim and ydim are at
least equal to 2 and at most equal to 50, with possibly lines consisting of spaces only that will be ignored and
with possibly spaces anywhere on the lines with digits. If n is the x
th digit of the y
th line with digits, with
0 ≤ x < xdim and 0 ≤ y < ydim , then n is to be associated with a point situated x × 0.4 cm to the right and
y × 0.4 cm below an origin.
4.2. Output. Consider executing from the Python prompt the statement from polygons import * followed
by the statement polys = Polygons(some_filename). In case some_filename does not exist in the working
directory, then Python will raise a FileNotFoundError exception, that does not need to be caught. Assume
that some_filename does exist (in the working directory). If the input is incorrect in that it does not contain
only 0’s and 1’a besides spaces, or in that it contains either too few or too many lines of digits, or in that
some line of digits contains too many or too few digits, or in that two of its lines of digits do not contain the
same number of digits, then the effect of executing polys = Polygons(some_filename) should be to generate
a PolygonsError exception that reads
Traceback (most recent call last):
...
polygons.PolygonsError: Incorrect input.
If the previous conditions hold but it is not possible to use all 1’s in the input and make them the contours
of polygons of depth d, for any natural number d, as defined in the general presentation, then the effect of
executing polys = Polygons(some_filename) should be to generate a PolygonsError exception that reads
Traceback (most recent call last):
...
polygons.PolygonsError: Cannot get polygons as expected.
If the input is correct and it is possible to use all 1’s in the input and make them the contours of polygons
of depth d, for any natural number d, as defined in the general presentation, then executing the statement
polys = Polygons(some_filename) followed by polys.analyse() should have the effect of outputting a first
line that reads
Polygon N:
with N an appropriate integer at least equal to 1 to refer to the N’th polygon listed in the order of polygons
with highest point from smallest value of y to largest value of y, and for a given value of y, from smallest value
of x to largest value of x, a second line that reads one of
Perimeter: a + b*sqrt(.**)
Perimeter: a
Perimeter: b*sqrt(.**)
with a an appropriate strictly positive floating point number with 1 digit after the decimal point and b an
appropriate strictly positive integer, a third line that reads
Area: a
with a an appropriate floating point number with 2 digits after the decimal point, a fourth line that reads one
of
Convex: yes
Convex: no
a fifth line that reads
Nb of invariant rotations: N
21
with N an appropriate integer at least equal to 1, and a sixth line that reads
Depth: N
with N an appropriate positive integer (possibly 0).
Pay attention to the expected format, including spaces.
If the input is correct and it is possible to use all 1’s in the input and make them the contours of poly gons of depth d, for any natural number d, as defined in the general presentation, then executing the state ment polys = Polygons(some_filename) followed by polys.display() should have the effect of produc ing a file named some_filename.tex that can be given as argument to pdflatex to generate a file named
some_filename.pdf. The provided examples will show you what some_filename.tex should contain.
• Polygons are drawn from lowest to highest depth, and for a given depth, the same ordering as previously
described is used.
• The point that determines the polygon index is used as a starting point in drawing the line segments
that make up the polygon, in a clockwise manner.
• A polygons’s colour is determined by its area. The largest polygons are yellow. The smallest polygons
are orange. Polygons in-between mix orange and yellow in proportion of their area. For instance, a
polygon whose size is 25% the difference of the size between the largest and the smallest polygon will
receive 25% of orange (and 75% of yellow). That proportion is computed as an integer. When the value
is not an integer, it is rounded to the closest integer, with values of the form z.5 rounded up to z + 1.
Pay attention to the expected format, including spaces and blank lines. Lines that start with % are comments.
The output of your program redirected to a file will be compared with the expected output saved in a file (of a
different name of course) using the diff command. For your program to pass the associated test, diff should
silently exit, which requires that the contents of both files be absolutely identical, character for character,
including spaces and blank lines. Check your program on the provided examples using the associated .tex files,
renaming them as they have the names of the files expected to be generated by your program.

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp








 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:EEEE4116代做、代寫MATLAB程序語言
  • 下一篇:代寫CPTG1405、代做Python設(shè)計(jì)程序
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號(hào)線
    合肥機(jī)場巴士4號(hào)線
    合肥機(jī)場巴士3號(hào)線
    合肥機(jī)場巴士3號(hào)線
    合肥機(jī)場巴士2號(hào)線
    合肥機(jī)場巴士2號(hào)線
    合肥機(jī)場巴士1號(hào)線
    合肥機(jī)場巴士1號(hào)線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          韩国精品在线观看| 国产亚洲视频在线观看| 欧美日韩免费观看中文| 欧美激情 亚洲a∨综合| 欧美日韩免费一区二区三区视频| 欧美性大战xxxxx久久久| 国产精品毛片在线看| 国产真实乱偷精品视频免| 极品尤物久久久av免费看| 亚洲毛片播放| 香蕉成人久久| 欧美国产先锋| 国产目拍亚洲精品99久久精品| 狠狠噜噜久久| 一本到高清视频免费精品| 亚洲欧美另类久久久精品2019| 久久久久成人精品免费播放动漫| 蜜臀91精品一区二区三区| 欧美午夜精品久久久久久久| 加勒比av一区二区| 一区二区三区日韩| 欧美**字幕| 国产视频久久久久| 一区二区三区高清不卡| 久久精品成人一区二区三区 | 亚洲毛片在线| 久久精品水蜜桃av综合天堂| 欧美日韩精品二区| 在线看日韩欧美| 亚洲欧美在线免费观看| 欧美激情一二三区| 狠狠88综合久久久久综合网| 亚洲综合另类| 欧美日韩成人在线| 在线看欧美视频| 久久av资源网| 国产精品一区二区你懂的| 亚洲精品在线二区| 老色鬼精品视频在线观看播放| 国产精品进线69影院| 日韩小视频在线观看专区| 久久亚洲综合| 一区二区三区在线高清| 午夜在线视频一区二区区别| 欧美日韩在线一二三| 亚洲精品一区中文| 欧美刺激性大交免费视频| 伊人成人开心激情综合网| 久久成人精品| 国内精品久久久久久| 亚洲欧美在线一区| 国产精品视频观看| 亚洲欧美高清| 国产精品香蕉在线观看| 亚洲综合第一页| 国产精品99一区二区| 亚洲视频在线看| 欧美亚洲不卡| 亚洲制服丝袜在线| 国产精品一区久久久久| 性亚洲最疯狂xxxx高清| 国产免费成人av| 久久岛国电影| 亚洲国产成人tv| 欧美精品乱码久久久久久按摩| 91久久视频| 欧美日韩综合另类| 午夜欧美理论片| 国产揄拍国内精品对白| 久久尤物视频| 日韩视频一区二区三区在线播放免费观看 | 久热精品视频在线免费观看| 亚洲高清在线播放| 欧美日韩精品中文字幕| 亚洲深爱激情| 国产日产精品一区二区三区四区的观看方式 | 夜夜嗨av一区二区三区| 国产精品jizz在线观看美国| 香蕉久久精品日日躁夜夜躁| 国产亚洲女人久久久久毛片| 免费成人黄色| 在线视频亚洲| 国产午夜久久久久| 欧美成人午夜激情视频| 亚洲新中文字幕| 含羞草久久爱69一区| 欧美高清视频一区二区| 亚洲一区二区视频| 依依成人综合视频| 欧美日韩一区免费| 久久精品在线观看| 一区二区不卡在线视频 午夜欧美不卡在 | 最新日韩中文字幕| 国产欧美精品| 欧美日本久久| 久久久久久久网站| 中文精品99久久国产香蕉| 国产一区二区黄色| 欧美日韩中文字幕精品| 久久久亚洲影院你懂的| 亚洲视频精品在线| 亚洲动漫精品| 国产亚洲欧美日韩一区二区| 欧美理论在线播放| 久久在线视频| 欧美在线|欧美| aaa亚洲精品一二三区| 精品91在线| 国产一区二区三区日韩欧美| 欧美视频在线免费| 欧美精品日韩| 欧美成人免费全部| 久久久午夜视频| 欧美一区二区黄色| 亚洲无毛电影| 99视频日韩| 日韩午夜三级在线| 在线精品高清中文字幕| 国产日韩欧美一区在线| 国产精品v一区二区三区| 欧美精品激情在线观看| 美女视频黄免费的久久| 欧美一区三区二区在线观看| 亚洲免费视频网站| 亚洲一区免费网站| 中文欧美字幕免费| 一区二区三区四区五区精品视频 | 日韩视频一区二区三区在线播放免费观看| 狠狠久久五月精品中文字幕| 国产一区二区按摩在线观看| 国产欧美精品在线| 国产欧美一区二区精品秋霞影院 | 最近看过的日韩成人| 伊人久久婷婷| 国模大胆一区二区三区| 国产亚洲欧美一级| 韩日午夜在线资源一区二区| 国产一区91| 依依成人综合视频| 亚洲国产日韩欧美| av成人福利| 午夜视频在线观看一区二区| 午夜精品区一区二区三| 欧美亚洲视频在线观看| 欧美在线高清| 快she精品国产999| 欧美大片在线观看一区| 欧美日韩在线不卡| 国产精品自在欧美一区| 国产欧美日韩91| 激情成人亚洲| 99精品热6080yy久久| 亚洲香蕉伊综合在人在线视看| 亚洲综合三区| 久久精品亚洲精品国产欧美kt∨| 久久久人成影片一区二区三区观看| 久久久久国产精品www| 欧美福利电影网| 国产精品久久久久久久久搜平片 | 国产一区二区三区成人欧美日韩在线观看| 国语自产精品视频在线看抢先版结局| 亚洲成色精品| 亚洲综合精品一区二区| 久久综合伊人77777蜜臀| 欧美日韩成人免费| 国产日韩欧美在线一区| 亚洲人成网站999久久久综合| 亚洲欧美成人精品| 麻豆av福利av久久av| 国产精品白丝jk黑袜喷水| 国内精品伊人久久久久av影院 | 国产精品理论片在线观看| 永久久久久久| 亚洲一区二区欧美日韩| 欧美a级理论片| 国产精品区一区二区三区| 亚洲国产成人porn| 午夜精品视频一区| 欧美日韩高清在线一区| 一区二区三区在线免费播放| 在线视频一区二区| 欧美成人免费大片| 国语自产在线不卡| 亚洲欧美激情一区二区| 欧美久久久久久| 亚洲大片精品永久免费| 欧美一区二区三区电影在线观看| 欧美精品久久久久久| 在线观看91精品国产入口| 亚洲欧美日韩第一区| 欧美日韩一二区| 亚洲激情成人在线| 老司机久久99久久精品播放免费| 国产精品三级视频| 亚洲伊人观看| 欧美日韩亚洲一区| 一区二区三区成人精品| 免费人成精品欧美精品| 伊大人香蕉综合8在线视| 久久精品免费看|