合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫CPTG1405、代做Python設計程序
        代寫CPTG1405、代做Python設計程序

        時間:2024-11-14  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Assignment 2
        CPTG1405, Trimester 3, 2024
        1. General matter
        1.1. Aims. The purpose of the assignment is to:
        • design and implement an interface based on the desired behaviour of an application program;
        • practice the use of Python syntax;
        • develop problem solving skills.
        1.2. Submission. Your program will be stored in a file n amed p olygons.py. A fter y ou h ave d eveloped and
        tested your program, upload it using Ed (unless you worked directly in Ed). Assignments can be submitted
        more than once; the last version is marked. Your assignment is due by November 11, 9:00am.
        1.3. Assessment. The assignment is worth 13 marks. It is going to be tested against a number of input files.
        For each test, the automarking script will let your program run for 30 seconds.
        Assignments can be submitted up to 5 days after the deadline. The maximum mark obtainable reduces by
        5% per full late day, for up to 5 days. Thus if students A and B hand in assignments worth 12 and 11, both
        two days late (that is, more than 24 hours late and no more than 48 hours late), then the maximum mark
        obtainable is 11.7, so A gets min(11.7, 11) = 11 and B gets min(11.7, 11) = 11. The outputs of your programs
        should be exactly as indicated.
        1.4. Reminder on plagiarism policy. You are permitted, indeed encouraged, to discuss ways to solve the
        assignment with other people. Such discussions must be in terms of algorithms, not code. But you must
        implement the solution on your own. Submissions are routinely scanned for similarities that occur when students
        copy and modify other people’s work, or work very closely together on a single implementation. Severe penalties
        apply.
        2. General presentation
        You will design and implement a program that will
        • extract and analyse the various characteristics of (simple) polygons, their contours being coded and
        stored in a file, and
        • – either display those characteristics: perimeter, area, convexity, number of rotations that keep the
        polygon invariant, and depth (the length of the longest chain of enclosing polygons)
        – or output some Latex code, to be stored in a file, from which a pictorial representation of the
        polygons can be produced, coloured in a way which is proportional to their area.
        Call encoding any 2-dimensional grid of size between between 2 × 2 and 50 × 50 (both dimensions can be
        different) all of whose elements are either 0 or 1.
        Call neighbour of a member m of an encoding any of the at most eight members of the grid whose value is 1
        and each of both indexes differs from m’s corresponding index by at most 1. Given a particular encoding, we
        inductively define for all natural numbers d the set of polygons of depth d (for this encoding) as follows. Let a
        natural number d be given, and suppose that for all d
        0 < d, the set of polygons of depth d
        0 has been defined.
        Change in the encoding all 1’s that determine those polygons to 0. Then the set of polygons of depth d is
        defined as the set of polygons which can be obtained from that encoding by connecting 1’s with some of their
        neighbours in such a way that we obtain a maximal polygon (that is, a polygon which is not included in any
        other polygon obtained from that encoding by connecting 1’s with some of their neighbours).
        1
        2
        3. Examples
        3.1. First example. The file polys_1.txt has the following contents:
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        11111111111111111111111111111111111111111111111111
        3
        Here is a possible interaction:
        $ python3
        ...
        >>> from polygons import *
        >>> polys = Polygons('polys_1.txt')
        >>> polys.analyse()
        Polygon 1:
        Perimeter: 78.4
        Area: 384.16
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 0
        Polygon 2:
        Perimeter: 75.2
        Area: 353.44
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 1
        Polygon 3:
        Perimeter: 72.0
        Area: **4.00
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 2
        Polygon 4:
        Perimeter: 68.8
        Area: 295.84
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 3
        Polygon 5:
        Perimeter: 65.6
        Area: 268.96
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 4
        Polygon 6:
        Perimeter: 62.4
        Area: 243.36
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 5
        Polygon 7:
        Perimeter: 59.2
        Area: 219.04
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 6
        Polygon 8:
        Perimeter: 56.0
        Area: 196.00
        Convex: yes
        Nb of invariant rotations: 4
        4
        Depth: 7
        Polygon 9:
        Perimeter: 52.8
        Area: 174.24
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 8
        Polygon 10:
        Perimeter: 49.6
        Area: 153.76
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 9
        Polygon 11:
        Perimeter: 46.4
        Area: 134.56
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 10
        Polygon 12:
        Perimeter: 43.2
        Area: 116.64
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 11
        Polygon 13:
        Perimeter: 40.0
        Area: 100.00
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 12
        Polygon 14:
        Perimeter: 36.8
        Area: 84.64
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 13
        Polygon 15:
        Perimeter: 33.6
        Area: 70.56
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 14
        Polygon 16:
        Perimeter: 30.4
        Area: 57.76
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 15
        Polygon 17:
        Perimeter: 27.2
        Area: 46.24
        Convex: yes
        Nb of invariant rotations: 4
        5
        Depth: 16
        Polygon 18:
        Perimeter: 24.0
        Area: 36.00
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 17
        Polygon 19:
        Perimeter: 20.8
        Area: 27.04
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 18
        Polygon 20:
        Perimeter: 17.6
        Area: 19.36
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 19
        Polygon 21:
        Perimeter: 14.4
        Area: 12.96
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 20
        Polygon 22:
        Perimeter: 11.2
        Area: 7.84
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 21
        Polygon 23:
        Perimeter: 8.0
        Area: 4.00
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 22
        Polygon 24:
        Perimeter: 4.8
        Area: 1.44
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 23
        Polygon 25:
        Perimeter: 1.6
        Area: 0.16
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 24
        >>> polys.display()
        6
        The effect of executing polys.display() is to produce a file named polys_1.tex that can be given as
        argument to pdflatex to produce a file named polys_1.pdf that views as follows.
        7
        3.2. Second example. The file polys_2.txt has the following contents:
        00000000000000000000000000000000000000000000000000
        01111111111111111111111111111111111111111111111110
        00111111111111111111111111111111111111111111111100
        00011111111111111111111111111111111111111111111000
        01001111111111111111111111111111111111111111110010
        01100111111111111111111111111111111111111111100110
        01110011111111111111111111111111111111111111001110
        01111001111111111111111111111111111111111110011110
        01111100111111111111111111111111111111111100111110
        01111110011111111111111111111111111111111001111110
        01111111001111111111111111111111111111110011111110
        01111111100111111111111111111111111111100111111110
        01111111110011111111111111111111111111001111111110
        01111111111001111111111111111111111110011111111110
        01111111111100111111111111111111111100111111111110
        01111111111110011111111111111111111001111111111110
        01111111111111001111111111111111110011111111111110
        01111111111111100111111111111111100111111111111110
        01111111111111110011111111111111001111111111111110
        01111111111111111001111111111110011111111111111110
        01111111111111111100111111111100111111111111111110
        01111111111111111110011111111001111111111111111110
        01111111111111111111001111110011111111111111111110
        01111111111111111111100111100111111111111111111110
        01111111111011111111110011001111111111011111111110
        01111111111111111111100111100111111111111111111110
        01111111111111111111001111110011111111111111111110
        01111111111111111110011111111001111111111111111110
        01111111111111111100111111111100111111111111111110
        01111111111111111001111111111110011111111111111110
        01111111111111110011111111111111001111111111111110
        01111111111111100111111111111111100111111111111110
        01111111111111001111111111111111110011111111111110
        01111111111110011111111111111111111001111111111110
        01111111111100111111111111111111111100111111111110
        01111111111001111111111111111111111110011111111110
        01111111110011111111111111111111111111001111111110
        01111111100111111111111111111111111111100111111110
        01111111001111111111111111111111111111110011111110
        01111110011111111111111111111111111111111001111110
        01111100111111111111111111111111111111111100111110
        01111001111111111111111111111111111111111110011110
        01110011111111111111111111111111111111111111001110
        01100111111111111111111111111111111111111111100110
        01001111111111111111111111111111111111111111110010
        00011111111111111111111111111111111111111111111000
        00111111111111111111111111111111111111111111111100
        01111111111111111111111111111111111111111111111110
        00000000000000000000000000000000000000000000000000
        8
        Here is a possible interaction:
        $ python3
        ...
        >>> from polygons import *
        >>> polys = Polygons('polys_2.txt')
        >>> polys.analyse()
        Polygon 1:
        Perimeter: 37.6 + 92*sqrt(.**)
        Area: 176.64
        Convex: no
        Nb of invariant rotations: 2
        Depth: 0
        Polygon 2:
        Perimeter: 17.6 + 42*sqrt(.**)
        Area: **.92
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 1
        Polygon 3:
        Perimeter: 16.0 + 38*sqrt(.**)
        Area: 60.80
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 2
        Polygon 4:
        Perimeter: 16.0 + 40*sqrt(.**)
        Area: 64.00
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 0
        Polygon 5:
        Perimeter: 14.4 + 34*sqrt(.**)
        Area: 48.96
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 3
        Polygon 6:
        Perimeter: 16.0 + 40*sqrt(.**)
        Area: 64.00
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 0
        Polygon 7:
        Perimeter: 12.8 + 30*sqrt(.**)
        Area: 38.40
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 4
        Polygon 8:
        Perimeter: 14.4 + 36*sqrt(.**)
        Area: 51.84
        Convex: yes
        Nb of invariant rotations: 1
        9
        Depth: 1
        Polygon 9:
        Perimeter: 11.2 + 26*sqrt(.**)
        Area: 29.12
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 5
        Polygon 10:
        Perimeter: 14.4 + 36*sqrt(.**)
        Area: 51.84
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 1
        Polygon 11:
        Perimeter: 9.6 + 22*sqrt(.**)
        Area: 21.12
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 6
        Polygon 12:
        Perimeter: 12.8 + ***sqrt(.**)
        Area: 40.96
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 2
        Polygon 13:
        Perimeter: 8.0 + 18*sqrt(.**)
        Area: 14.40
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 7
        Polygon 14:
        Perimeter: 12.8 + ***sqrt(.**)
        Area: 40.96
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 2
        Polygon 15:
        Perimeter: 6.4 + 14*sqrt(.**)
        Area: 8.96
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 8
        Polygon 16:
        Perimeter: 11.2 + 28*sqrt(.**)
        Area: 31.36
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 3
        Polygon 17:
        Perimeter: 4.8 + 10*sqrt(.**)
        Area: 4.80
        Convex: yes
        Nb of invariant rotations: 1
        10
        Depth: 9
        Polygon 18:
        Perimeter: 11.2 + 28*sqrt(.**)
        Area: 31.36
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 3
        Polygon 19:
        Perimeter: 3.2 + 6*sqrt(.**)
        Area: 1.92
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 10
        Polygon 20:
        Perimeter: 9.6 + 24*sqrt(.**)
        Area: 23.04
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 4
        Polygon 21:
        Perimeter: 1.6 + 2*sqrt(.**)
        Area: 0.**
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 11
        Polygon 22:
        Perimeter: 9.6 + 24*sqrt(.**)
        Area: 23.04
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 4
        Polygon 23:
        Perimeter: 8.0 + 20*sqrt(.**)
        Area: 16.00
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 5
        Polygon 24:
        Perimeter: 8.0 + 20*sqrt(.**)
        Area: 16.00
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 5
        Polygon 25:
        Perimeter: 6.4 + 16*sqrt(.**)
        Area: 10.24
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 6
        Polygon 26:
        Perimeter: 6.4 + 16*sqrt(.**)
        Area: 10.24
        Convex: yes
        Nb of invariant rotations: 1
        11
        Depth: 6
        Polygon 27:
        Perimeter: 4.8 + 12*sqrt(.**)
        Area: 5.76
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 7
        Polygon 28:
        Perimeter: 4.8 + 12*sqrt(.**)
        Area: 5.76
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 7
        Polygon 29:
        Perimeter: 3.2 + 8*sqrt(.**)
        Area: 2.56
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 8
        Polygon 30:
        Perimeter: 3.2 + 8*sqrt(.**)
        Area: 2.56
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 8
        Polygon 31:
        Perimeter: 1.6 + 4*sqrt(.**)
        Area: 0.64
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 9
        Polygon **:
        Perimeter: 1.6 + 4*sqrt(.**)
        Area: 0.64
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 9
        Polygon 33:
        Perimeter: 17.6 + 42*sqrt(.**)
        Area: **.92
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 1
        Polygon 34:
        Perimeter: 16.0 + 38*sqrt(.**)
        Area: 60.80
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 2
        Polygon 35:
        Perimeter: 14.4 + 34*sqrt(.**)
        Area: 48.96
        Convex: yes
        Nb of invariant rotations: 1
        12
        Depth: 3
        Polygon 36:
        Perimeter: 12.8 + 30*sqrt(.**)
        Area: 38.40
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 4
        Polygon 37:
        Perimeter: 11.2 + 26*sqrt(.**)
        Area: 29.12
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 5
        Polygon 38:
        Perimeter: 9.6 + 22*sqrt(.**)
        Area: 21.12
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 6
        Polygon 39:
        Perimeter: 8.0 + 18*sqrt(.**)
        Area: 14.40
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 7
        Polygon 40:
        Perimeter: 6.4 + 14*sqrt(.**)
        Area: 8.96
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 8
        Polygon 41:
        Perimeter: 4.8 + 10*sqrt(.**)
        Area: 4.80
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 9
        Polygon 42:
        Perimeter: 3.2 + 6*sqrt(.**)
        Area: 1.92
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 10
        Polygon 43:
        Perimeter: 1.6 + 2*sqrt(.**)
        Area: 0.**
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 11
        >>> polys.display()
        13
        The effect of executing polys.display() is to produce a file named polys_2.tex that can be given as
        argument to pdflatex to produce a file named polys_2.pdf that views as follows.
        14
        3.3. Third example. The file polys_3.txt has the following contents:
        0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
        1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1
        0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0
        0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0
        0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0
        0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0
        0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
        0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
        0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
        0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
        1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
        1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1
        1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1
        1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1
        1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1
        1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1
        1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1
        1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1
        1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1
        1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
        0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
        0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
        0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
        0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
        0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0
        0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0
        0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0
        0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0
        1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1
        0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
        15
        Here is a possible interaction:
        $ python3
        ...
        >>> from polygons import *
        >>> polys = Polygons('polys_3.txt')
        >>> polys.analyse()
        Polygon 1:
        Perimeter: 2.4 + 9*sqrt(.**)
        Area: 2.80
        Convex: no
        Nb of invariant rotations: 1
        Depth: 0
        Polygon 2:
        Perimeter: 51.2 + 4*sqrt(.**)
        Area: 117.28
        Convex: no
        Nb of invariant rotations: 2
        Depth: 0
        Polygon 3:
        Perimeter: 2.4 + 9*sqrt(.**)
        Area: 2.80
        Convex: no
        Nb of invariant rotations: 1
        Depth: 0
        Polygon 4:
        Perimeter: 17.6 + 40*sqrt(.**)
        Area: 59.04
        Convex: no
        Nb of invariant rotations: 2
        Depth: 1
        Polygon 5:
        Perimeter: 3.2 + 28*sqrt(.**)
        Area: 9.76
        Convex: no
        Nb of invariant rotations: 1
        Depth: 2
        Polygon 6:
        Perimeter: 27.2 + 6*sqrt(.**)
        Area: 5.76
        Convex: no
        Nb of invariant rotations: 1
        Depth: 2
        Polygon 7:
        Perimeter: 4.8 + 14*sqrt(.**)
        Area: 6.72
        Convex: no
        Nb of invariant rotations: 1
        Depth: 1
        Polygon 8:
        Perimeter: 4.8 + 14*sqrt(.**)
        Area: 6.72
        Convex: no
        Nb of invariant rotations: 1
        16
        Depth: 1
        Polygon 9:
        Perimeter: 3.2 + 2*sqrt(.**)
        Area: 1.12
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 2
        Polygon 10:
        Perimeter: 3.2 + 2*sqrt(.**)
        Area: 1.12
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 2
        Polygon 11:
        Perimeter: 2.4 + 9*sqrt(.**)
        Area: 2.80
        Convex: no
        Nb of invariant rotations: 1
        Depth: 0
        Polygon 12:
        Perimeter: 2.4 + 9*sqrt(.**)
        Area: 2.80
        Convex: no
        Nb of invariant rotations: 1
        Depth: 0
        >>> polys.display()
        The effect of executing polys.display() is to produce a file named polys_3.tex that can be given as
        argument to pdflatex to produce a file named polys_3.pdf that views as follows.
        17
        3.4. Fourth example. The file polys_4.txt has the following contents:
        1 1 101 11 0 1 1 1 0 1 1 1011 10 1 1 1 0 000 1 1 1 0 00 1 001 11 1
        01 01000100010001000100100 110010010101001
        100 0010 0 0 1 00 0 1 0 00 100 01000 100 0 1 01 0001011 1
        1000101010101010101000100101010100010000
        0100010001000100010000100010100011100011
        100 1 0 0 0 10 0 0 1 00 0 1 00 01 010 000 0000 0 0 0 0 00 01 11
        11101 1101110 1 1 1 0111011101100000001111000
        000000000000000000000001100000011000100 0
        1 111001100111111100000000111111000 010000
        110 01 0 1 1 0 1011111100011111000000000001000
        001 1000011 10 000000000 11111111111111111 00
        18
        Here is a possible interaction:
        $ python3
        ...
        >>> from polygons import *
        >>> polys = Polygons('polys_4.txt')
        >>> polys.analyse()
        Polygon 1:
        Perimeter: 11.2 + 28*sqrt(.**)
        Area: 18.88
        Convex: no
        Nb of invariant rotations: 2
        Depth: 0
        Polygon 2:
        Perimeter: 3.2 + 5*sqrt(.**)
        Area: 2.00
        Convex: no
        Nb of invariant rotations: 1
        Depth: 0
        Polygon 3:
        Perimeter: 1.6 + 6*sqrt(.**)
        Area: 1.76
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 0
        Polygon 4:
        Perimeter: 3.2 + 1*sqrt(.**)
        Area: 0.88
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 0
        Polygon 5:
        Perimeter: 4*sqrt(.**)
        Area: 0.**
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 1
        Polygon 6:
        Perimeter: 4*sqrt(.**)
        Area: 0.**
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 1
        Polygon 7:
        Perimeter: 4*sqrt(.**)
        Area: 0.**
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 1
        Polygon 8:
        Perimeter: 4*sqrt(.**)
        Area: 0.**
        Convex: yes
        Nb of invariant rotations: 4
        19
        Depth: 1
        Polygon 9:
        Perimeter: 1.6 + 1*sqrt(.**)
        Area: 0.24
        Convex: yes
        Nb of invariant rotations: 1
        Depth: 0
        Polygon 10:
        Perimeter: 0.8 + 2*sqrt(.**)
        Area: 0.16
        Convex: yes
        Nb of invariant rotations: 2
        Depth: 0
        Polygon 11:
        Perimeter: 12.0 + 7*sqrt(.**)
        Area: 5.68
        Convex: no
        Nb of invariant rotations: 1
        Depth: 0
        Polygon 12:
        Perimeter: 2.4 + 3*sqrt(.**)
        Area: 0.88
        Convex: no
        Nb of invariant rotations: 1
        Depth: 0
        Polygon 13:
        Perimeter: 1.6
        Area: 0.16
        Convex: yes
        Nb of invariant rotations: 4
        Depth: 0
        Polygon 14:
        Perimeter: 5.6 + 3*sqrt(.**)
        Area: 1.36
        Convex: no
        Nb of invariant rotations: 1
        Depth: 0
        >>> polys.display()
        The effect of executing polys.display() is to produce a file named polys_4.tex that can be given as
        argument to pdflatex to produce a file named polys_4.pdf that views as follows.
        20
        4. Detailed description
        4.1. Input. The input is expected to consist of ydim lines of xdim 0’s and 1’s, where xdim and ydim are at
        least equal to 2 and at most equal to 50, with possibly lines consisting of spaces only that will be ignored and
        with possibly spaces anywhere on the lines with digits. If n is the x
        th digit of the y
        th line with digits, with
        0 ≤ x < xdim and 0 ≤ y < ydim , then n is to be associated with a point situated x × 0.4 cm to the right and
        y × 0.4 cm below an origin.
        4.2. Output. Consider executing from the Python prompt the statement from polygons import * followed
        by the statement polys = Polygons(some_filename). In case some_filename does not exist in the working
        directory, then Python will raise a FileNotFoundError exception, that does not need to be caught. Assume
        that some_filename does exist (in the working directory). If the input is incorrect in that it does not contain
        only 0’s and 1’a besides spaces, or in that it contains either too few or too many lines of digits, or in that
        some line of digits contains too many or too few digits, or in that two of its lines of digits do not contain the
        same number of digits, then the effect of executing polys = Polygons(some_filename) should be to generate
        a PolygonsError exception that reads
        Traceback (most recent call last):
        ...
        polygons.PolygonsError: Incorrect input.
        If the previous conditions hold but it is not possible to use all 1’s in the input and make them the contours
        of polygons of depth d, for any natural number d, as defined in the general presentation, then the effect of
        executing polys = Polygons(some_filename) should be to generate a PolygonsError exception that reads
        Traceback (most recent call last):
        ...
        polygons.PolygonsError: Cannot get polygons as expected.
        If the input is correct and it is possible to use all 1’s in the input and make them the contours of polygons
        of depth d, for any natural number d, as defined in the general presentation, then executing the statement
        polys = Polygons(some_filename) followed by polys.analyse() should have the effect of outputting a first
        line that reads
        Polygon N:
        with N an appropriate integer at least equal to 1 to refer to the N’th polygon listed in the order of polygons
        with highest point from smallest value of y to largest value of y, and for a given value of y, from smallest value
        of x to largest value of x, a second line that reads one of
        Perimeter: a + b*sqrt(.**)
        Perimeter: a
        Perimeter: b*sqrt(.**)
        with a an appropriate strictly positive floating point number with 1 digit after the decimal point and b an
        appropriate strictly positive integer, a third line that reads
        Area: a
        with a an appropriate floating point number with 2 digits after the decimal point, a fourth line that reads one
        of
        Convex: yes
        Convex: no
        a fifth line that reads
        Nb of invariant rotations: N
        21
        with N an appropriate integer at least equal to 1, and a sixth line that reads
        Depth: N
        with N an appropriate positive integer (possibly 0).
        Pay attention to the expected format, including spaces.
        If the input is correct and it is possible to use all 1’s in the input and make them the contours of poly gons of depth d, for any natural number d, as defined in the general presentation, then executing the state ment polys = Polygons(some_filename) followed by polys.display() should have the effect of produc ing a file named some_filename.tex that can be given as argument to pdflatex to generate a file named
        some_filename.pdf. The provided examples will show you what some_filename.tex should contain.
        • Polygons are drawn from lowest to highest depth, and for a given depth, the same ordering as previously
        described is used.
        • The point that determines the polygon index is used as a starting point in drawing the line segments
        that make up the polygon, in a clockwise manner.
        • A polygons’s colour is determined by its area. The largest polygons are yellow. The smallest polygons
        are orange. Polygons in-between mix orange and yellow in proportion of their area. For instance, a
        polygon whose size is 25% the difference of the size between the largest and the smallest polygon will
        receive 25% of orange (and 75% of yellow). That proportion is computed as an integer. When the value
        is not an integer, it is rounded to the closest integer, with values of the form z.5 rounded up to z + 1.
        Pay attention to the expected format, including spaces and blank lines. Lines that start with % are comments.
        The output of your program redirected to a file will be compared with the expected output saved in a file (of a
        different name of course) using the diff command. For your program to pass the associated test, diff should
        silently exit, which requires that the contents of both files be absolutely identical, character for character,
        including spaces and blank lines. Check your program on the provided examples using the associated .tex files,
        renaming them as they have the names of the files expected to be generated by your program.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp








         

        掃一掃在手機打開當前頁
      1. 上一篇:EEEE4116代做、代寫MATLAB程序語言
      2. 下一篇:代寫CPTG1405、代做Python設計程序
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
      4. 幣安app官網下載 短信驗證碼 丁香花影院

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 久久久国产精品一区二区18禁| 精品深夜AV无码一区二区老年 | 日韩精品一区二区三区在线观看l 日韩精品一区二区三区毛片 | 中文字幕无码一区二区免费| 丰满人妻一区二区三区免费视频| 亚洲无码一区二区三区| 久久精品国产一区二区电影| 国产精品一区二区久久乐下载| 波多野结衣AV一区二区三区中文 | 无码精品人妻一区二区三区漫画 | 亚洲精品国产suv一区88| 国偷自产一区二区免费视频| 一区二区三区中文| 秋霞电影网一区二区三区| 成人欧美一区二区三区在线视频| 亚洲AV无码一区二区三区性色 | 国产福利一区二区三区在线视频| 熟妇人妻AV无码一区二区三区| 无码少妇一区二区| 亚洲AV综合色区无码一区爱AV| 无码少妇精品一区二区免费动态| 久久久久成人精品一区二区| 韩国福利一区二区三区高清视频| 亚洲图片一区二区| 秋霞无码一区二区| 一区二区在线观看视频| 精品福利一区二区三区免费视频| 国产精品99精品一区二区三区 | 一区二区在线免费观看| 一区二区三区在线|欧| 中文字幕视频一区| 亚洲av无码一区二区三区在线播放| 国产精品综合一区二区三区| 欧美日韩一区二区成人午夜电影| 一区二区三区无码高清| 狠狠色婷婷久久一区二区三区 | 日本免费一区二区三区最新| 国产激情一区二区三区在线观看| 成人区人妻精品一区二区不卡网站| 亚洲日韩精品一区二区三区| 精品亚洲一区二区|