合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        ME5701程序代寫、代做Matlab設(shè)計(jì)編程
        ME5701程序代寫、代做Matlab設(shè)計(jì)編程

        時(shí)間:2024-11-04  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Assignment for Part 2 in ME5701
        ——Linear stability analysis of Mathieu equation——
        Due time: 23:59:59, Nov. 15th, 2024
        This assignment will guide you to study the stability properties of the Mathieu equation. Please read through
        carefully the problem description below and understand the derivations provided.
        The Mathieu equation is a type of differential equation that is significant in various fields of applied mathe matics and physics. For example, it appears in the analysis of quantum systems with periodic potentials, such as
        electrons in a crystal lattice (solid-state physics). The equation is also used in the study of the stability of orbits
        in celestial mechanics, particularly in systems with periodic gravitational forces.
        Mathematically, the Mathieu equation is a differential equation with periodic coefficients, given by
        d
        2u
        dt2
        + (δ + 2 cost)u = 0
        where δ and  are real-valued constant parameters, t is the time and u is the unknown. Note that the coefficient
        cost is 2π-periodic. Therefore, understanding and solving the Mathieu equation are essential for predicting and
        controlling the behaviour of systems subject to periodic influences. The aim of this assignment is to determine the
        stability of the solution u = 0 as a function of t. (You can easily verify that u = 0 is a fixed point of the equation.)
        In the following sections, we will employ the Floquet analysis to investigate the stability of the Mathieu equation.
        To complete this CA, you will need to develop numerical codes to complete the specified tasks and
        summarize your results in a comprehensive report.
        • Task (a) To begin, since the Mathieu equation contains a 2nd-order temporal derivative term, we introduce
        v =
        du
        dt to lower the order of time derivative. Consequently, we have the following equations
        du
        dt = v (1)
        dv
        dt + (δ + 2 cost)u = 0 (2)
        Rewrite the above equations in a matrix form. You have to complete the following matrix
        . (3)
        The method to be introduced below is called the Floquet–Fourier–Hill method. You can read Deconinck &
        Kutz (2006) for more information. Following this method, the solution form for u and v can be expanded
        −1 is the imaginary unit, n ∈ (−∞, ∞) is an integer in the Fourier expansion, an, bn are the
        expansion coefficients and λ, which will soon become clear that it is the eigenvalue in our stability problem,
        is complex-valued. (Recall that the stability of the system is determined by the real parts of its eigenvalues
        λ. Specifically, the system is unstable if at least one eigenvalue has a positive real part. Conversely, the
        system is stable if the real parts of all the eigenvalues are negative.)
        By substituting the solution forms of u(t), v(t) into Eqs. (1,2) and noting that cost =
        arrive at an infinite system of equations whose general form is shown below
        λan + inan = bn (4)
        λbn + inbn = −(δan + an−1 + an+1) (5)
        1You have to provide an explanation in the report.
        where, again, n can be any integer from −∞ to ∞. Here, the derivation of Eq. (4) is explained:.
        By comparing the LHS and RHS of the last equation above, for each term e
        (λ+in)t
        , their corresponding
        coefficients should be the same; otherwise, the equation won’t hold for arbitrary t! This leads to the
        underlined part of the equation, which is (λ + in)an = bn, or Eq. (4). Now, your task is to derive Eq. (5)
        using the same reasoning. Note that you will need to rename the index n during the derivation process.
        • Task (b) Next, we will write the above system of equations in a matrix form. As usual, we only retain the
        λ-related term on the LHS and move all the other terms to the RHS, resulting in from Eqs. (4,5)
        λan = −inan + bn, (6)
        λbn = −inbn − (δan + an−1 + an+1). (7)
        Define a vector q =
        bn−1
        bn
        bn
        , where, from top to bottom, we stack a−∞ to a∞, followed by b−∞ to b∞. In
        this example, 6 representative terms are explicitly shown.
        Now we can write Eqs. (6,7) in a matrix form
        (8)
        or λq = Mq, where I have denoted the big matrix as M. You have to show the complete matrix in the report.
        Apparently, this is an eigenvalue problem for M with λ being the eigenvalue. By solving for λ, we can reveal
        the stability of the Mathieu equation around u = 0. To numerically solve the problem, we have to truncate
        the value of n and we choose n ∈ [−20, 20], which means that we have a−20, a−19..., a−1, a0, a1, ..., a19, a20
        and likewise for bn.
        Write a numerical code to solve this eigenvalue problem for δ =  = 1 and plot the eigenspectrum. Eigen spectrum means the set of all the eigenvalues. A sample eigenspectrum is shown in the appendix. In Matlab,
        you can use “eig” to solve an eigenvalue problem and obtain the whole spectrum by plotting the real part
        of the eigenvalue as the x axis and the imaginary part as the y axis. Do “help eig” in Matlab to get more
        information.
        Try n ∈ [−40, 40] with the same δ,  to see if the results are converged or not. Discuss your result (what’s
        the stability of the equation? what do you observe? what do you find interesting? etc.).
        • Task (c) Next, we will use another method to arrive at the same conclusion.
        We start with a simple case for the illustration. Consider a scalar function q which is governed by
        dq
        dt = A(t)q (9)
        2
        where A(t) = A(t + T) is T-periodic. We can solve this equation using the separation of variables, that is,
        from dq
        q = A(t)dt, we can get in general q(t) = q(0)e
        R
        t
        0 A(t
        0 )dt0 . You can verify this result by substitution.
        Remember that this is the only solution. From this solution, by assigning t = T, we can also deduce
        q(T) = q(0)e
        R
        T
        0 A(t)dt
        . (10)
        Then, we realise that y(t) = q(t + T) should also be a solution to the original equation because
        dy
        dt =
        dq(t + T)
        dt =
        dq(t + T)
        d(t + T)
        = A(t + T)q(t + T) = A(t)y(t)
        which is the same equation as the original one. But y(t), q(t) are not necessarily the same and they may
        differ by a constant multiplier, which means y(t) = cq(t) = q(t + T), where c is a constant. From this
        equation, by considering t = 0, we have q(T) = cq(0). Comparing this equation with Eq. (10), we have
        c = e
        R 0
        T A(t)dt
        . (11)
        On the other hand, the stability of Eq. (9) refers to the growth of q over a period T, which is q
        q
        (
        (0)
        T)
        . And
        this ratio is exactly c! This means that we can evaluate the value of c to investigate the stability of the
        original equation. To do so, we need to time-integrate the matrix A from 0 to T because we have the time
        integration R T
        0 A(t)dt in Eq. (11).
        In our problem, the matrix A is given in Eq. (3) and q =
        
        u
        v
        
        is a vector, not a scalar. Thus, the derivation
        above should be presented in a multi-dimensional version. This can be found in the Appendix. Read it and
        realise that we need to calculate the monodromy matrix E to get its eigenvalues to reveal the stability of
        the equation (the monodromy matrix E is equivalent to c above). The numerical recipe is summarised as
        follows
        – (I) From Eq. (12), by setting t = 0, we can have Q(T) = EQ(0). One can assume Q(0) = I, the
        identity matrix (why?2
        ).
        – (II) Time-integrate the original equation d
        dt
        Q = A(t)Q from the initial condition Q(0) = I to get Q(T).
        The results will be our monodromy matrix E, according to (I). How to time-integrate an equation?
        See the explanation below.
        – (III) Calculate the eigenvalue µ of E and do the transformation 2
        1
        π
        log µ, which should be equal to the
        eigenvalues obtained in task (b). You have to verify this in the report.
        In Matlab, you can use ode45 to time-integrate an ODE. Do “help ode45” in Matlab to understand the
        syntax. You will see that ode45 can be executed using
        [T OUT, Y OUT] = ode45(ODEF UN, T SP AN, Y 0, OP T IONS).
        ODEF UN is to implement Eqs. (1,2). The TSPAN denotes the time span and should be [0, 2π]. The Y0
        should be the columns of the identity matrix  1 0
        0 1 and so you have to execute ode45 twice with Y0 being
        
        1
        0
        
        and  0
        1
        
        , respectively. Then you assemble the two resultant columns to form the monodromy matrix.
        Follow the above numerical recipe to get the final eigenvalues.
        Note that the eigenvalue λ in task (b) is connected to the eigenvalue µ in task (c) by λ = 2
        1
        π
        log µ. This also
        means that the stability criterion, when rephrased using µ, would be that the system is unstable if at least
        one eigenvalue µ has a magnitude larger than 1. Conversely, the system is stable if the magnitudes of all
        the eigenvalues are less than 1. In Matlab, you can use “abs” to get the magnitude of a complex number.
        • Task (d) Using either method explained above, do a parametric study of δ, . You can for example generate
        a graph showing the stability or instability of the system on the δ −  plane with δ ∈ [0, 2] and  ∈ [0, 1].
        Discuss what you find and explain the results.
        A sample result can be found in the Appendix.
        2You have to provide an explanation in the report.
        3
        • Task (e) To verify your result, we can also look at the time evolution of the solution u directly. Pick two
        arbitrary sets of parameters with δ ∈ [1, 2] and  ∈ [0.5, 1], one being stable and the other being unstable.
        In each case, plot u as a function of t and explain what you find.
        A sample result can be found in the Appendix.
        4
        Appendix for suggestions and hints:
        • You can use any programming language you are familiar with. Please use double-precision arithmetic in
        the computation.
        • A late submission will result in a penalty. The complete submission includes a report and all the code
        scripts. The code should be executable and generate the graphs to be presented in the report once executed
        (this will facilitate my checking of your code).
        • This is a group assignment with a maximum of 2 students per group, with only one submission per group.
        You can also do it individually.
        • This CA makes up 20% of the final mark. (The remaining 30% of the final mark for Part 2 will be the 2
        structured questions in the quiz. Similarly, Part 1 will make up the other 50%.)
        • In task (a), the complete citation of Deconinck & Nathan (2006) is Deconinck B. & Nathan Kutz, J. 2006
        Computing spectra of linear operators using the Floquet–Fourier–Hill method. Journal of Computational
        Physics 219 (1), 296–**1.
        • A sample result for the eigenspectrum in task (b) is shown below. Note that the real part of the eigenvalue
        λ is plotted as the x axis and imaginary part the y axis.
        Real part of λ
        • A multi-dimensional derivation of the Floquet theory in Task (c) is provided below, which may facilitate
        your understanding. The equation is
        dq
        dt = A(t)q, where A(t + T) = A(t)
        The linear equation admits a solution of matrix Q(t), that is d
        dt
        Q = A(t)Q. The columns qk(t) are solutions
        to the above equation, i.e., d
        dt
        qk = A(t)qk(t) or qk(T) = e
        R
        T
        0 A(t)dtqk(0).3 Consider yk(t) = qk(t + T), we
        have
        dyk
        dt =
        dqk(t + T)
        dt =
        dqk(t + T)
        d(t + T)
        = A(t + T)qk(t + T) = A(t)yk(t)
        which is the same equation as the original one. This means yk and qk are a linear combination of each
        other; or, we can have
        yk(t) = X
        1≤j≤n
        ek,jqj (t) or Y(t) = EQ(t) or Q(t + T) = EQ(t) (12)
        3Note that a time-ordering operator is omitted here since it is implicitly understood that the equation will propagate in the positive
        temporal direction.
        5
        Imaginary part of λ
        where Y(t) is the matrix accommodating all the yk(t) vectors. In the Floquet theory, E is called monodromy
        matrix which represents the effect of the operator A over one period (i.e. the linearized Poincar´e map).
        Thus, a state Q(t) left-multiplied by E will propagate the former to a later state at t + T, that is Q(t + T).
        Besides, you can easily understand the matrix E here is the coefficient c in the scalar version of the derivation.
        • In task (c), ode45 in Matlab also provides an option for setting up the tolerance criterion for convergence;
        for this, you can consider options = odeset(
        0 AbsT ol0 , 1e − 7,
        0 RelT ol0 , 1e − 8).
        • In task (d), a sample result for the stability/instability in the δ −  plane with δ ∈ [0, 1] and  ∈ [0, 0.5]
        is provided below. The plot is generated using the “contourf” command in Matlab. The yellow region
        indicates stability of the Mathieu equation (i.e., either all λ < 0 or all |µ| < 1). The blue region denotes the
        instability. Such a graph is called neutral curve, which means that the interface between the two colours
        indicates the neutral condition that λ = 0 or |µ| = 1.
        Stable
        Unstable
        • In task (e), a sample result for an unstable solution u at  = δ = 0.5 is shown below. The black curve
        is generated using [t, x] = ode45(0 mathieu0 , [**π], [0.2392 0.343], options) in Matlab, where the ODEFUN
        is called mathieu in my code, [**π] is the TSPAN for the black curve, [0.2392 0.343] is some random
        initial condition and options have been explained earlier. The dashed vertical lines indicate 2π, 4π, 6π,
        corresponding to 1,2,3 periods. To generate the green and the red curves, you change 6π to 4π and 2π
        respectively. You can clearly see that the solution u is amplifying over the periods, so the equation at these
        parameters is unstable.
        The instability result is consistent with the neutral curve obtained above.
        6

        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:代寫159.740編程、代做c/c++,Python程序
      2. 下一篇:COMP2404代做、C++編程設(shè)計(jì)
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時(shí)官網(wǎng)400(全國服務(wù)熱線)
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時(shí)客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場巴士4號(hào)線
        合肥機(jī)場巴士4號(hào)線
        合肥機(jī)場巴士3號(hào)線
        合肥機(jī)場巴士3號(hào)線
        合肥機(jī)場巴士2號(hào)線
        合肥機(jī)場巴士2號(hào)線
      4. 幣安app官網(wǎng)下載 短信驗(yàn)證碼 丁香花影院

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        主站蜘蛛池模板: 无码AV天堂一区二区三区| 成人精品一区二区三区电影| 色偷偷av一区二区三区| 日本免费一区尤物| 精品人妻AV一区二区三区 | 无码精品人妻一区| 性色AV一区二区三区| 一级毛片完整版免费播放一区| 中文字幕av一区| 人妻无码一区二区三区免费| 熟女少妇丰满一区二区| 精品久久久久中文字幕一区| 国产福利一区视频| 日本精品3d动漫一区二区| 性色AV一区二区三区天美传媒| 无码少妇一区二区性色AV| 美女啪啪一区二区三区| 国产综合一区二区在线观看| 国产激情一区二区三区成人91| 日韩一区二区三区视频| 秋霞电影网一区二区三区| 国产在线视频一区二区三区| 波多野结衣一区二区免费视频 | av无码免费一区二区三区| 精品国产日产一区二区三区 | 精品伦精品一区二区三区视频 | 国产精品熟女一区二区| 日本道免费精品一区二区| 视频一区精品自拍| 精品日产一区二区三区手机| 国产一区二区三区乱码| 国产伦精品一区二区三区| 国产成人精品一区二区三区免费| 亚洲一区二区三区影院| 无码一区二区三区在线观看| 久久99精品波多结衣一区| 日本一区二区免费看| 精品国产福利一区二区| 国产小仙女视频一区二区三区| 国产亚洲福利精品一区二区| 亚洲AⅤ无码一区二区三区在线|