99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫159.740編程、代做c/c++,Python程序
代寫159.740編程、代做c/c++,Python程序

時間:2024-11-04  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
Letter Recognition using Deep Neural Nets with Softmax Units 
Deadline: 4th of November 
Instructions: 
You are allowed to work in a group of 2 members for this assignment. 
Your task is to write a program that implements and tests a multi-layer feed-forward network for 
recognising characters defined in the UCI machine learning repository: 
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Requirements: 
1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-up 
code that will help you get started quickly with the assignment is provided via Stream. 
2. You may utilise/consult codes available in books and websites provided that you cite them 
properly, explain the codes clearly, and incorporate them with the start-up codes provided. 
3. Implement a multi-layer feed-forward network using backpropagation learning and test it on the 
given problem domain using different network configurations and parameter settings. There 
should be at least 2 hidden layers in your neural network. 
h21 h11 X1
X2
F1
F2 h12 h22
OF1
OF2
δh21
δh22 δh12
δf1
δf2
δh11
… … … … 
X16
Fm Hi Hj
OFm
Input node
Legend: 
hidden node
output node = softmax unit
 Note that all nodes, except the input nodes have a bias node attached to it. 
159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
A. Inputs 
 16 primitive numerical attributes (statistical moments and edge counts) 
 The input values in the data set have been scaled to fit into a range of integer values 
from 0 through 15. It is up to you if you want to normalise the inputs before feeding 
them to your network. 
B. Data sets 
 Use the data set downloadable from: 
 Training set: use the first 16,000 
 Test set/Validation set: use the remaining 4,000 
 Submit your training data, validation/test data in separate files. 
C. Performance measure: 
 Mean Squared Error (MSE) 
 Percentage of Good Classification (PGC) 
 Confusion Matrix (only for the best Neural Network configuration found) 
D. Training 
 Provide a facility for shuffling data before feeding it to the network during training 
 Provide a facility for continuing network training after loading weights from file (do not 
reset the weights). 
 Provide a facility for training the network continuously until either the maximum 
epochs have been reached, or the target percentage of good classification has been met. 
 For each training epoch, record the Mean Squared Error and the Percentage of Good 
Classification in a text file. You need this to plot the results of training later, to 
compare the effects of the parameter settings and the architecture of your network. 
E. Testing the Network 
 Calculate the performance of the network on the Test set in terms of both the MSE and 
PGC. 
F. Network Architecture 
 It is up to you to determine the number of hidden layers and number of hidden nodes 
per hidden layer in your network. The minimum number of hidden layers is 2. 
 Use softmax units at the output layer 
 Experiment with ReLU and tanh as the activation functions of your hidden units 
 Determine the weight-update formulas based on the activation functions used 
4. Provide an interface in your program for testing the network using an input string consisting of 
the 16 attributes. The results should indicate the character classification, and the 26 actual 
numeric outputs of the network. (the start-up codes partly include this functionality already, for 
a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for the 
multiple hidden layer architecture that you have designed). 
5. Provide an interface in your program for: 
A. Reading the entire data set 
B. Initialising the network 
C. Loading trained weights 
D. Saving trained weights 
E. Training the network up to a maximum number of epochs 
159.740 Intelligent Systems
Assignment #2 
F. Testing the network on a specified test set (from a file) 
G. Shuffling the training set. 
6. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the best 
configuration that delivered the best experiment results. 
7. Use a fixed random seed number (123) so that any randomisation can be replicated empirically. 
8. It is up to you to write the main program, and any classes or data structures that you may 
require. 
9. You may choose to use a momentum term or regularization term, as part of backpropagation 
learning. Indicate in your documentation, if you are using this technique. 
10. You need to modify the weight-update rules to reflect the correct derivatives of the activation 
function used in your network architecture. 
11. Provide graphs in Excel showing the network performance on training data and test data 
(similar to the graphs discussed in the lecture). 
12. Provide the specifications of your best trained network. Fill-up Excel workbook 
(best_network_configuration.xlsx). 
13. Provide a confusion matrix for the best NN classifier system found in your experiments. 
14. Provide a short user guide for your program. 
15. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment. 
Criteria for marking 
 Documentation – 30% 
o Submit the trained weights of your best network (name it as best_weights.txt) 
o Generate a graph of the performance of your best performing network (MSE vs. 
Epochs) on the training set and test set. 
o Generate a confusion matrix of your best network 
o fill-up the Excel file, named checklist.xlsx
o fill-up the Excel file, named best_network_configuration.xlsx
o provide a short user guide for your program 
 System implementation – 70% 
Nothing follows. 
N.H.Reyes 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:DATA 2100代寫、代做Python語言編程
  • 下一篇:ME5701程序代寫、代做Matlab設計編程
  • ·代寫2530FNW、代做Python程序語言
  • ·代寫CIS5200、代做Java/Python程序語言
  • ·LCSCI4207代做、Java/Python程序代寫
  • ·代寫COP3502、Python程序設計代做
  • ·代做MLE 5217、代寫Python程序設計
  • ·代寫ISAD1000、代做Java/Python程序設計
  • ·代做COMP3811、C++/Python程序設計代寫
  • ·代寫SCIE1000、代做Python程序設計
  • ·代寫comp2022、代做c/c++,Python程序設計
  • ·CVEN9612代寫、代做Java/Python程序設計
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          午夜一区二区三区不卡视频| 欧美日韩一区二区欧美激情 | 91久久精品国产91久久性色| 欧美午夜精品久久久久久浪潮| 午夜视频在线观看一区| 亚洲区国产区| 一区二区在线视频| 国产精品视频在线观看| 欧美精品激情在线| 久久一区二区三区四区| 亚洲欧美国产视频| 一本一本大道香蕉久在线精品| 黄色成人免费网站| 国产亚洲欧美日韩一区二区| 欧美日韩一区成人| 欧美黄色免费网站| 久久偷窥视频| 久久免费视频在线观看| 久久福利精品| 亚洲欧美视频| 亚洲欧美日韩网| 亚洲一区国产一区| 亚洲一区二区三区免费在线观看| 日韩午夜在线视频| 日韩一区二区高清| 一区二区三区成人| 亚洲天堂av图片| 在线视频精品一| 亚洲在线黄色| 午夜精品久久久久久久久久久 | 欧美日本乱大交xxxxx| 免费欧美在线| 欧美激情第五页| 欧美日韩国产a| 欧美日韩在线观看一区二区| 欧美日韩国产综合久久| 国产精品久久7| 国产区精品在线观看| 国产一区二区三区久久| 韩国三级在线一区| 尤物九九久久国产精品的特点| 在线成人中文字幕| 日韩一二在线观看| 亚洲午夜在线| 久久www免费人成看片高清| 久久人人九九| 欧美三级韩国三级日本三斤| 国产精品青草久久久久福利99| 国产免费观看久久| 亚洲国产精品电影在线观看| 日韩视频一区| 欧美伊人精品成人久久综合97 | 亚洲第一福利在线观看| 亚洲精品在线视频| 欧美亚洲一区二区三区| 久久夜色精品国产亚洲aⅴ| 欧美日韩国产美女| 国产一区二区三区在线观看视频 | 在线观看亚洲| 亚洲视频综合| 久久午夜视频| 国产精品亚洲аv天堂网| 精品福利免费观看| 亚洲一区日韩在线| 欧美成人国产va精品日本一级| 欧美午夜精品一区二区三区| 国产午夜精品在线| 99视频有精品| 免费成人激情视频| 国产免费亚洲高清| 99视频在线观看一区三区| 久久国产精品一区二区| 欧美手机在线| 欧美一区二区三区视频| 亚洲在线网站| 欧美日韩在线观看一区二区三区 | 激情六月婷婷综合| 欧美国产精品| 久久婷婷国产综合国色天香| 国产噜噜噜噜噜久久久久久久久| 黄色成人在线免费| 亚洲一区在线免费| 欧美久久久久久久久| 1024日韩| 久久久久久亚洲精品杨幂换脸| 中文av一区特黄| 亚洲午夜精品一区二区| 久久久亚洲一区| 国产日韩欧美在线看| 在线视频亚洲一区| 欧美日韩一区二区免费在线观看| 亚洲国产日韩一区二区| 久久嫩草精品久久久精品一| 国产偷自视频区视频一区二区| 香蕉av777xxx色综合一区| 国产精品啊啊啊| 亚洲综合二区| 国产精品一区二区三区乱码 | 麻豆成人综合网| 伊人成年综合电影网| 久久婷婷国产综合精品青草 | 国产自产精品| 久久久精品久久久久| 精品动漫3d一区二区三区| 久久久水蜜桃av免费网站| 红桃视频国产精品| 麻豆九一精品爱看视频在线观看免费| 黄色精品一区二区| 麻豆成人91精品二区三区| 1769国内精品视频在线播放| 欧美成人中文| 亚洲网站在线观看| 国产欧美1区2区3区| 欧美在线亚洲一区| 亚洲国产精品久久人人爱蜜臀 | 亚洲精品系列| 欧美视频一区在线| 欧美一区国产二区| 亚洲成色www久久网站| 欧美精品综合| 欧美一区二区三区视频| 亚洲国产成人精品女人久久久| 欧美激情久久久久| 亚洲一区日韩| 在线观看欧美激情| 欧美日韩免费在线视频| 欧美在线免费视屏| 亚洲人成艺术| 国产欧美日韩亚州综合| 免费欧美在线视频| 亚洲男人的天堂在线aⅴ视频| 国模私拍一区二区三区| 欧美精品二区| 久久久久久一区二区三区| 夜夜嗨av一区二区三区网页 | 国产一区二区三区免费观看| 欧美激情第3页| 久久精品国产99国产精品澳门| 亚洲精品一区二区网址| 国产亚洲二区| 国产精品v亚洲精品v日韩精品 | 久久亚洲捆绑美女| 亚洲欧美成人一区二区三区| 亚洲国产一区二区在线| 国产一区视频在线观看免费| 欧美日本在线视频| 女人色偷偷aa久久天堂| 久久不射中文字幕| 亚洲欧美日韩精品久久久| 99国产精品99久久久久久| 亚洲第一网站免费视频| 国产亚洲激情在线| 国产精品久久久久久av下载红粉| 欧美电影在线观看完整版| 久久久久国产免费免费| 亚洲欧美日韩国产一区二区三区 | 亚洲激情婷婷| 韩日视频一区| 国外成人在线| 国产一区二区精品丝袜| 国产亚洲欧美另类中文| 国产精品午夜久久| 国产精品扒开腿爽爽爽视频 | 亚洲午夜电影在线观看| 一本色道久久综合亚洲91| 亚洲欧洲精品天堂一级| 最近看过的日韩成人| 亚洲欧洲一区二区三区久久| 亚洲国产清纯| 亚洲精品九九| 亚洲日本精品国产第一区| 最新日韩av| 99视频精品全部免费在线| 亚洲深夜激情| 午夜一区二区三区不卡视频| 午夜精品影院在线观看| 午夜欧美大片免费观看| 久久爱www久久做| 久久免费视频在线| 欧美精品成人| 欧美视频在线观看免费网址| 国产精品成人一区| 国产香蕉97碰碰久久人人| 国内精品久久久久影院色| 伊人婷婷久久| 一区二区激情视频| 欧美一激情一区二区三区| 久久人人爽人人| 欧美国产专区| 国产精品国码视频| 狠狠色香婷婷久久亚洲精品| 136国产福利精品导航网址| 日韩视频二区| 亚洲欧美综合另类中字| 每日更新成人在线视频| 欧美午夜宅男影院| 精品999在线观看| 亚洲网站在线观看| 久久理论片午夜琪琪电影网| 欧美日韩国产黄|