99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫159.740編程、代做c/c++,Python程序
代寫159.740編程、代做c/c++,Python程序

時間:2024-11-04  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
Letter Recognition using Deep Neural Nets with Softmax Units 
Deadline: 4th of November 
Instructions: 
You are allowed to work in a group of 2 members for this assignment. 
Your task is to write a program that implements and tests a multi-layer feed-forward network for 
recognising characters defined in the UCI machine learning repository: 
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Requirements: 
1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-up 
code that will help you get started quickly with the assignment is provided via Stream. 
2. You may utilise/consult codes available in books and websites provided that you cite them 
properly, explain the codes clearly, and incorporate them with the start-up codes provided. 
3. Implement a multi-layer feed-forward network using backpropagation learning and test it on the 
given problem domain using different network configurations and parameter settings. There 
should be at least 2 hidden layers in your neural network. 
h21 h11 X1
X2
F1
F2 h12 h22
OF1
OF2
δh21
δh22 δh12
δf1
δf2
δh11
… … … … 
X16
Fm Hi Hj
OFm
Input node
Legend: 
hidden node
output node = softmax unit
 Note that all nodes, except the input nodes have a bias node attached to it. 
159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
A. Inputs 
 16 primitive numerical attributes (statistical moments and edge counts) 
 The input values in the data set have been scaled to fit into a range of integer values 
from 0 through 15. It is up to you if you want to normalise the inputs before feeding 
them to your network. 
B. Data sets 
 Use the data set downloadable from: 
 Training set: use the first 16,000 
 Test set/Validation set: use the remaining 4,000 
 Submit your training data, validation/test data in separate files. 
C. Performance measure: 
 Mean Squared Error (MSE) 
 Percentage of Good Classification (PGC) 
 Confusion Matrix (only for the best Neural Network configuration found) 
D. Training 
 Provide a facility for shuffling data before feeding it to the network during training 
 Provide a facility for continuing network training after loading weights from file (do not 
reset the weights). 
 Provide a facility for training the network continuously until either the maximum 
epochs have been reached, or the target percentage of good classification has been met. 
 For each training epoch, record the Mean Squared Error and the Percentage of Good 
Classification in a text file. You need this to plot the results of training later, to 
compare the effects of the parameter settings and the architecture of your network. 
E. Testing the Network 
 Calculate the performance of the network on the Test set in terms of both the MSE and 
PGC. 
F. Network Architecture 
 It is up to you to determine the number of hidden layers and number of hidden nodes 
per hidden layer in your network. The minimum number of hidden layers is 2. 
 Use softmax units at the output layer 
 Experiment with ReLU and tanh as the activation functions of your hidden units 
 Determine the weight-update formulas based on the activation functions used 
4. Provide an interface in your program for testing the network using an input string consisting of 
the 16 attributes. The results should indicate the character classification, and the 26 actual 
numeric outputs of the network. (the start-up codes partly include this functionality already, for 
a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for the 
multiple hidden layer architecture that you have designed). 
5. Provide an interface in your program for: 
A. Reading the entire data set 
B. Initialising the network 
C. Loading trained weights 
D. Saving trained weights 
E. Training the network up to a maximum number of epochs 
159.740 Intelligent Systems
Assignment #2 
F. Testing the network on a specified test set (from a file) 
G. Shuffling the training set. 
6. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the best 
configuration that delivered the best experiment results. 
7. Use a fixed random seed number (123) so that any randomisation can be replicated empirically. 
8. It is up to you to write the main program, and any classes or data structures that you may 
require. 
9. You may choose to use a momentum term or regularization term, as part of backpropagation 
learning. Indicate in your documentation, if you are using this technique. 
10. You need to modify the weight-update rules to reflect the correct derivatives of the activation 
function used in your network architecture. 
11. Provide graphs in Excel showing the network performance on training data and test data 
(similar to the graphs discussed in the lecture). 
12. Provide the specifications of your best trained network. Fill-up Excel workbook 
(best_network_configuration.xlsx). 
13. Provide a confusion matrix for the best NN classifier system found in your experiments. 
14. Provide a short user guide for your program. 
15. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment. 
Criteria for marking 
 Documentation – 30% 
o Submit the trained weights of your best network (name it as best_weights.txt) 
o Generate a graph of the performance of your best performing network (MSE vs. 
Epochs) on the training set and test set. 
o Generate a confusion matrix of your best network 
o fill-up the Excel file, named checklist.xlsx
o fill-up the Excel file, named best_network_configuration.xlsx
o provide a short user guide for your program 
 System implementation – 70% 
Nothing follows. 
N.H.Reyes 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:DATA 2100代寫、代做Python語言編程
  • 下一篇:ME5701程序代寫、代做Matlab設計編程
  • ·代寫2530FNW、代做Python程序語言
  • ·代寫CIS5200、代做Java/Python程序語言
  • ·LCSCI4207代做、Java/Python程序代寫
  • ·代寫COP3502、Python程序設計代做
  • ·代做MLE 5217、代寫Python程序設計
  • ·代寫ISAD1000、代做Java/Python程序設計
  • ·代做COMP3811、C++/Python程序設計代寫
  • ·代寫SCIE1000、代做Python程序設計
  • ·代寫comp2022、代做c/c++,Python程序設計
  • ·CVEN9612代寫、代做Java/Python程序設計
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲免费观看视频| 色婷婷综合视频在线观看| 欧美精品一卡二卡| 99re6这里只有精品视频在线观看 99re8在线精品视频免费播放 | 亚洲不卡av一区二区三区| 日韩理论片中文av| 亚洲三级免费观看| 亚洲午夜久久久久久久久久久| 五月婷婷激情综合| 国产成人啪免费观看软件| 94色蜜桃网一区二区三区| 欧美性做爰猛烈叫床潮| 日韩精品中文字幕一区二区三区| 亚洲一区二区三区爽爽爽爽爽| 91免费国产在线| 日韩欧美一级片| 91丨九色porny丨蝌蚪| 欧美午夜宅男影院| 欧美高清视频不卡网| 欧美sm极限捆绑bd| 天天色综合成人网| 国产美女主播视频一区| 欧美性猛交xxxxxxxx| 久久一日本道色综合| 午夜国产不卡在线观看视频| 蜜桃一区二区三区四区| av午夜一区麻豆| 日韩精品最新网址| 蜜桃av一区二区| 日韩欧美在线一区二区三区| 中文字幕欧美一| 99久久国产免费看| 一区二区成人在线| 色综合咪咪久久| 亚洲在线免费播放| 欧美在线短视频| 日韩和欧美的一区| 欧美日韩国产大片| 精品一区二区综合| 五月婷婷久久综合| 在线免费观看成人短视频| 久久亚洲精精品中文字幕早川悠里| 一区二区高清免费观看影视大全| 91精品办公室少妇高潮对白| 亚洲男人的天堂在线观看| 欧美伊人久久久久久午夜久久久久| 亚洲日韩欧美一区二区在线| 色婷婷激情久久| 日本不卡的三区四区五区| 欧美午夜电影一区| 亚洲一级二级在线| 日韩视频免费观看高清完整版 | 中文字幕综合网| 欧美性一二三区| 国产精品一区二区在线看| 亚洲免费色视频| 精品久久久久久亚洲综合网| 91丨九色丨蝌蚪丨老版| 久久国产精品99久久久久久老狼| 中文字幕一区二区三区四区 | 美日韩一区二区三区| 精品三级在线观看| 国产精品综合网| 国产精品国产馆在线真实露脸| 色诱视频网站一区| 成人黄页毛片网站| 国产美女av一区二区三区| 亚洲一区二区三区四区在线观看 | 国产精品综合在线视频| 亚洲精品中文字幕在线观看| 国产日韩欧美不卡| 日韩欧美一卡二卡| 欧美一级二级在线观看| 欧美一区日本一区韩国一区| 在线一区二区三区做爰视频网站| 99久久亚洲一区二区三区青草| 成人一道本在线| 国产成人自拍在线| 99精品久久只有精品| 日韩av一级片| 国产精品一二三四五| 精品一区二区av| 99精品在线免费| 91精品在线一区二区| 日韩美一区二区三区| 亚洲欧美日韩国产中文在线| 亚洲美女淫视频| 五月婷婷综合网| aaa欧美大片| 777久久久精品| 欧美精品久久天天躁| 天天综合网天天综合色| 青青草97国产精品免费观看无弹窗版| 国产精品美女久久久久久久 | 天堂久久一区二区三区| 蜜臀av性久久久久蜜臀aⅴ流畅| 国产一区三区三区| 91在线视频网址| 日韩欧美成人午夜| 日本一区二区视频在线| 亚洲欧美视频在线观看视频| 日韩精品三区四区| 国产色产综合产在线视频| 精品美女被调教视频大全网站| 国产伦理精品不卡| 在线欧美日韩精品| 国产精品国产三级国产有无不卡 | 国产成人h网站| 欧美亚洲免费在线一区| 欧美videos中文字幕| 亚洲另类中文字| 国产·精品毛片| 欧美精品少妇一区二区三区| 亚洲人成精品久久久久| 夜夜嗨av一区二区三区中文字幕| 日本乱人伦一区| 精品国产乱码久久久久久老虎| 国产精品三级电影| 日本女优在线视频一区二区| 国产高清精品网站| 国产午夜亚洲精品不卡| 男女男精品网站| 久久一区二区视频| 激情综合五月天| 欧美美女网站色| 日韩精品成人一区二区三区| www.亚洲精品| 精品盗摄一区二区三区| 国产精品欧美精品| 国产精品一区在线观看乱码| 正在播放亚洲一区| 亚洲成人精品在线观看| 欧美亚洲动漫制服丝袜| 亚洲成人免费在线| 日韩午夜精品视频| 狠狠色狠狠色综合日日91app| 中文字幕一区二区三中文字幕| 日本电影欧美片| 国产在线播放一区二区三区| 亚洲va国产va欧美va观看| 精品国偷自产国产一区| 欧美特级限制片免费在线观看| 成熟亚洲日本毛茸茸凸凹| 免费高清在线视频一区·| 色婷婷综合久久久久中文| 欧美一区二区啪啪| 精品一区二区在线播放| 成人av免费在线| 午夜久久福利影院| 国产精品久久久久久久久图文区 | 日本高清免费不卡视频| 91久久一区二区| 高清不卡一区二区| 成人av先锋影音| 成人精品视频一区二区三区尤物| 日韩av电影天堂| 视频一区免费在线观看| 亚洲成av人片一区二区| 亚洲一区二区三区四区五区黄 | 蜜桃av一区二区在线观看| 亚洲高清不卡在线| 日本在线不卡视频| 国产专区综合网| 99久久精品国产一区二区三区| 91麻豆免费观看| 欧美精选在线播放| 日韩精品一区二区三区视频播放| 欧美高清在线一区二区| 风间由美一区二区av101| 日本韩国精品在线| 午夜精品一区二区三区免费视频| 亚洲一区在线观看免费观看电影高清 | 国产成人精品三级| 色素色在线综合| 久久久亚洲精品一区二区三区| 国产精品伦一区| 久草中文综合在线| 欧美系列亚洲系列| 国产女人18毛片水真多成人如厕 | 久久国产精品色| 成人精品视频网站| 欧美色视频在线观看| 国产精品对白交换视频 | 99精品久久免费看蜜臀剧情介绍| 欧美日韩的一区二区| 国产欧美日本一区二区三区| 亚洲九九爱视频| 日韩高清在线不卡| k8久久久一区二区三区| 精品成人一区二区三区四区| 亚洲欧洲av色图| 欧美一区二区黄色| 美日韩黄色大片| 毛片一区二区三区| 99久久99久久久精品齐齐| 亚洲精品一线二线三线无人区| 亚洲综合色区另类av| 91老司机福利 在线| 国产精品久久久久久久久久久免费看| 蜜臀av性久久久久蜜臀aⅴ|