99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫159.740編程、代做c/c++,Python程序
代寫159.740編程、代做c/c++,Python程序

時間:2024-11-04  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
Letter Recognition using Deep Neural Nets with Softmax Units 
Deadline: 4th of November 
Instructions: 
You are allowed to work in a group of 2 members for this assignment. 
Your task is to write a program that implements and tests a multi-layer feed-forward network for 
recognising characters defined in the UCI machine learning repository: 
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Requirements: 
1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-up 
code that will help you get started quickly with the assignment is provided via Stream. 
2. You may utilise/consult codes available in books and websites provided that you cite them 
properly, explain the codes clearly, and incorporate them with the start-up codes provided. 
3. Implement a multi-layer feed-forward network using backpropagation learning and test it on the 
given problem domain using different network configurations and parameter settings. There 
should be at least 2 hidden layers in your neural network. 
h21 h11 X1
X2
F1
F2 h12 h22
OF1
OF2
δh21
δh22 δh12
δf1
δf2
δh11
… … … … 
X16
Fm Hi Hj
OFm
Input node
Legend: 
hidden node
output node = softmax unit
 Note that all nodes, except the input nodes have a bias node attached to it. 
159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
A. Inputs 
 16 primitive numerical attributes (statistical moments and edge counts) 
 The input values in the data set have been scaled to fit into a range of integer values 
from 0 through 15. It is up to you if you want to normalise the inputs before feeding 
them to your network. 
B. Data sets 
 Use the data set downloadable from: 
 Training set: use the first 16,000 
 Test set/Validation set: use the remaining 4,000 
 Submit your training data, validation/test data in separate files. 
C. Performance measure: 
 Mean Squared Error (MSE) 
 Percentage of Good Classification (PGC) 
 Confusion Matrix (only for the best Neural Network configuration found) 
D. Training 
 Provide a facility for shuffling data before feeding it to the network during training 
 Provide a facility for continuing network training after loading weights from file (do not 
reset the weights). 
 Provide a facility for training the network continuously until either the maximum 
epochs have been reached, or the target percentage of good classification has been met. 
 For each training epoch, record the Mean Squared Error and the Percentage of Good 
Classification in a text file. You need this to plot the results of training later, to 
compare the effects of the parameter settings and the architecture of your network. 
E. Testing the Network 
 Calculate the performance of the network on the Test set in terms of both the MSE and 
PGC. 
F. Network Architecture 
 It is up to you to determine the number of hidden layers and number of hidden nodes 
per hidden layer in your network. The minimum number of hidden layers is 2. 
 Use softmax units at the output layer 
 Experiment with ReLU and tanh as the activation functions of your hidden units 
 Determine the weight-update formulas based on the activation functions used 
4. Provide an interface in your program for testing the network using an input string consisting of 
the 16 attributes. The results should indicate the character classification, and the 26 actual 
numeric outputs of the network. (the start-up codes partly include this functionality already, for 
a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for the 
multiple hidden layer architecture that you have designed). 
5. Provide an interface in your program for: 
A. Reading the entire data set 
B. Initialising the network 
C. Loading trained weights 
D. Saving trained weights 
E. Training the network up to a maximum number of epochs 
159.740 Intelligent Systems
Assignment #2 
F. Testing the network on a specified test set (from a file) 
G. Shuffling the training set. 
6. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the best 
configuration that delivered the best experiment results. 
7. Use a fixed random seed number (123) so that any randomisation can be replicated empirically. 
8. It is up to you to write the main program, and any classes or data structures that you may 
require. 
9. You may choose to use a momentum term or regularization term, as part of backpropagation 
learning. Indicate in your documentation, if you are using this technique. 
10. You need to modify the weight-update rules to reflect the correct derivatives of the activation 
function used in your network architecture. 
11. Provide graphs in Excel showing the network performance on training data and test data 
(similar to the graphs discussed in the lecture). 
12. Provide the specifications of your best trained network. Fill-up Excel workbook 
(best_network_configuration.xlsx). 
13. Provide a confusion matrix for the best NN classifier system found in your experiments. 
14. Provide a short user guide for your program. 
15. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment. 
Criteria for marking 
 Documentation – 30% 
o Submit the trained weights of your best network (name it as best_weights.txt) 
o Generate a graph of the performance of your best performing network (MSE vs. 
Epochs) on the training set and test set. 
o Generate a confusion matrix of your best network 
o fill-up the Excel file, named checklist.xlsx
o fill-up the Excel file, named best_network_configuration.xlsx
o provide a short user guide for your program 
 System implementation – 70% 
Nothing follows. 
N.H.Reyes 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:DATA 2100代寫、代做Python語言編程
  • 下一篇:ME5701程序代寫、代做Matlab設計編程
  • ·代寫2530FNW、代做Python程序語言
  • ·代寫CIS5200、代做Java/Python程序語言
  • ·LCSCI4207代做、Java/Python程序代寫
  • ·代寫COP3502、Python程序設計代做
  • ·代做MLE 5217、代寫Python程序設計
  • ·代寫ISAD1000、代做Java/Python程序設計
  • ·代做COMP3811、C++/Python程序設計代寫
  • ·代寫SCIE1000、代做Python程序設計
  • ·代寫comp2022、代做c/c++,Python程序設計
  • ·CVEN9612代寫、代做Java/Python程序設計
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日韩精品一区二区三区四区视频| 欧洲另类一二三四区| 日韩精品电影一区亚洲| 亚洲色图视频免费播放| 国产无一区二区| 精品人在线二区三区| 91精品国产麻豆| 日韩欧美一区二区久久婷婷| 欧美一卡二卡三卡| 欧美一区三区四区| 日韩欧美综合一区| 日韩三级电影网址| 国产人伦精品一区二区| 久久综合国产精品| 国产亚洲美州欧州综合国| 国产亲近乱来精品视频| 自拍偷拍欧美激情| 亚洲高清久久久| 日韩精品一级二级| 久久99精品久久久久久国产越南| 久久se精品一区精品二区| 国产麻豆午夜三级精品| 成人动漫中文字幕| 91久久精品一区二区| 欧美精品一卡二卡| 久久你懂得1024| 亚洲视频狠狠干| 午夜精品久久久久久久蜜桃app | 日本在线不卡一区| 激情综合色播五月| 日本视频免费一区| 国产成人久久精品77777最新版本| 国产激情视频一区二区在线观看| 91丨九色丨黑人外教| 日韩一区二区在线看片| 国产欧美一区二区精品婷婷| 一区二区国产盗摄色噜噜| 蜜桃久久久久久久| 99精品在线免费| 91精品国产高清一区二区三区| wwww国产精品欧美| 一区二区三区四区蜜桃| 久久国产精品99精品国产| 国产91综合一区在线观看| 欧美三级视频在线| 久久亚洲精品小早川怜子| 一区二区三区高清在线| 国产真实乱偷精品视频免| 91麻豆swag| 精品免费视频一区二区| 一区二区在线免费| 国模一区二区三区白浆| 欧美日韩免费不卡视频一区二区三区| 精品理论电影在线观看| 亚洲午夜精品久久久久久久久| 国产一区二区三区av电影| 在线区一区二视频| 中文字幕一区在线| 国产精品亚洲成人| 91精品国产aⅴ一区二区| 最新国产成人在线观看| 国产91高潮流白浆在线麻豆| 欧美一区二区三区四区在线观看| 亚洲柠檬福利资源导航| 粉嫩13p一区二区三区| 久久久青草青青国产亚洲免观| 亚洲综合色丁香婷婷六月图片| 国产成人精品免费看| 精品国产一区二区三区不卡| 亚洲成人动漫在线免费观看| 色成人在线视频| 国产精品天干天干在观线| 国产乱码精品一区二区三区av| 日韩午夜在线观看| 男人的j进女人的j一区| 91精品欧美久久久久久动漫 | 日韩高清不卡一区二区三区| 91国产福利在线| 亚洲午夜免费视频| 欧美日韩专区在线| 午夜国产不卡在线观看视频| 欧美日韩一区高清| 无吗不卡中文字幕| 日韩手机在线导航| 国产美女在线精品| 国产免费成人在线视频| av中文一区二区三区| 亚洲欧美日韩国产手机在线 | 欧美福利电影网| 精品一区二区三区在线播放 | 国产精品一级片在线观看| 久久一区二区三区四区| 国产成人精品亚洲777人妖 | 欧美mv和日韩mv国产网站| 国产在线播放一区| 国产精品乱人伦中文| 色综合咪咪久久| 日韩电影免费在线看| 久久精品一区八戒影视| 91视频在线观看| 视频在线观看国产精品| 久久九九全国免费| www.一区二区| 亚洲成人动漫精品| 亚洲精品在线网站| 成人黄页在线观看| 亚洲高清在线精品| 久久午夜电影网| 在线国产亚洲欧美| 国产一区二区不卡老阿姨| 日韩久久一区二区| 欧美一级艳片视频免费观看| 懂色av中文一区二区三区 | 麻豆精品在线视频| 亚洲欧洲日产国码二区| 欧美一区二区国产| 91一区二区三区在线观看| 奇米综合一区二区三区精品视频 | 亚洲欧洲另类国产综合| 日韩网站在线看片你懂的| 成人性生交大片免费| 日日夜夜精品视频免费| 亚洲同性gay激情无套| 欧美va日韩va| 欧美日韩精品一二三区| a在线播放不卡| 麻豆精品一区二区综合av| 亚洲黄色性网站| 日本一区二区三区在线不卡| 欧美无人高清视频在线观看| 国产精品亚洲成人| 激情综合色丁香一区二区| 亚洲h在线观看| 一区二区三区鲁丝不卡| 国产日韩欧美激情| 久久久久久久久久美女| 欧美一区二区大片| 欧美日韩国产大片| 欧美亚洲一区二区在线观看| 成人免费视频app| 国产盗摄一区二区| 国精产品一区一区三区mba桃花| 香蕉久久一区二区不卡无毒影院| 国产精品久久久久毛片软件| 久久婷婷国产综合精品青草| 日韩一级片网站| 7777精品伊人久久久大香线蕉超级流畅 | 香蕉成人伊视频在线观看| 亚洲精品国产第一综合99久久| 中文字幕av免费专区久久| 久久精品视频网| 国产目拍亚洲精品99久久精品| 精品国产一区二区亚洲人成毛片| 91精品欧美福利在线观看| 91精品国产91久久综合桃花| 欧美高清视频不卡网| 欧美日韩精品免费| 91精品国产综合久久久久久久| 欧美日韩国产区一| 91麻豆精品国产91久久久使用方法| 欧美性三三影院| 欧美午夜电影网| 91精品国产美女浴室洗澡无遮挡| 911精品产国品一二三产区| 91精品免费在线| 欧美变态tickling挠脚心| 精品电影一区二区| 国产精品视频线看| 一区二区三区波多野结衣在线观看 | 91免费国产视频网站| 色婷婷精品久久二区二区蜜臀av | 欧美日韩黄视频| 欧美成人国产一区二区| 久久久久国产精品厨房| 国产精品无码永久免费888| 亚洲欧洲日本在线| 婷婷综合在线观看| 黄网站免费久久| av动漫一区二区| 欧美日韩成人综合天天影院 | 国产福利一区二区三区视频| 97超碰欧美中文字幕| 欧美日韩黄色影视| 久久久另类综合| 一区二区三区日韩精品视频| 日韩精品一级中文字幕精品视频免费观看 | 一区视频在线播放| 日韩1区2区日韩1区2区| 丁香啪啪综合成人亚洲小说| 99re这里都是精品| 精品黑人一区二区三区久久| 国产精品麻豆欧美日韩ww| 日韩va欧美va亚洲va久久| www.66久久| 欧美一级免费观看| 亚洲精品国产无套在线观| 美日韩一区二区| 91国内精品野花午夜精品| 久久久亚洲午夜电影| 天堂蜜桃一区二区三区|