99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫159.740編程、代做c/c++,Python程序
代寫159.740編程、代做c/c++,Python程序

時間:2024-11-04  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
Letter Recognition using Deep Neural Nets with Softmax Units 
Deadline: 4th of November 
Instructions: 
You are allowed to work in a group of 2 members for this assignment. 
Your task is to write a program that implements and tests a multi-layer feed-forward network for 
recognising characters defined in the UCI machine learning repository: 
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Requirements: 
1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-up 
code that will help you get started quickly with the assignment is provided via Stream. 
2. You may utilise/consult codes available in books and websites provided that you cite them 
properly, explain the codes clearly, and incorporate them with the start-up codes provided. 
3. Implement a multi-layer feed-forward network using backpropagation learning and test it on the 
given problem domain using different network configurations and parameter settings. There 
should be at least 2 hidden layers in your neural network. 
h21 h11 X1
X2
F1
F2 h12 h22
OF1
OF2
δh21
δh22 δh12
δf1
δf2
δh11
… … … … 
X16
Fm Hi Hj
OFm
Input node
Legend: 
hidden node
output node = softmax unit
 Note that all nodes, except the input nodes have a bias node attached to it. 
159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
A. Inputs 
 16 primitive numerical attributes (statistical moments and edge counts) 
 The input values in the data set have been scaled to fit into a range of integer values 
from 0 through 15. It is up to you if you want to normalise the inputs before feeding 
them to your network. 
B. Data sets 
 Use the data set downloadable from: 
 Training set: use the first 16,000 
 Test set/Validation set: use the remaining 4,000 
 Submit your training data, validation/test data in separate files. 
C. Performance measure: 
 Mean Squared Error (MSE) 
 Percentage of Good Classification (PGC) 
 Confusion Matrix (only for the best Neural Network configuration found) 
D. Training 
 Provide a facility for shuffling data before feeding it to the network during training 
 Provide a facility for continuing network training after loading weights from file (do not 
reset the weights). 
 Provide a facility for training the network continuously until either the maximum 
epochs have been reached, or the target percentage of good classification has been met. 
 For each training epoch, record the Mean Squared Error and the Percentage of Good 
Classification in a text file. You need this to plot the results of training later, to 
compare the effects of the parameter settings and the architecture of your network. 
E. Testing the Network 
 Calculate the performance of the network on the Test set in terms of both the MSE and 
PGC. 
F. Network Architecture 
 It is up to you to determine the number of hidden layers and number of hidden nodes 
per hidden layer in your network. The minimum number of hidden layers is 2. 
 Use softmax units at the output layer 
 Experiment with ReLU and tanh as the activation functions of your hidden units 
 Determine the weight-update formulas based on the activation functions used 
4. Provide an interface in your program for testing the network using an input string consisting of 
the 16 attributes. The results should indicate the character classification, and the 26 actual 
numeric outputs of the network. (the start-up codes partly include this functionality already, for 
a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for the 
multiple hidden layer architecture that you have designed). 
5. Provide an interface in your program for: 
A. Reading the entire data set 
B. Initialising the network 
C. Loading trained weights 
D. Saving trained weights 
E. Training the network up to a maximum number of epochs 
159.740 Intelligent Systems
Assignment #2 
F. Testing the network on a specified test set (from a file) 
G. Shuffling the training set. 
6. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the best 
configuration that delivered the best experiment results. 
7. Use a fixed random seed number (123) so that any randomisation can be replicated empirically. 
8. It is up to you to write the main program, and any classes or data structures that you may 
require. 
9. You may choose to use a momentum term or regularization term, as part of backpropagation 
learning. Indicate in your documentation, if you are using this technique. 
10. You need to modify the weight-update rules to reflect the correct derivatives of the activation 
function used in your network architecture. 
11. Provide graphs in Excel showing the network performance on training data and test data 
(similar to the graphs discussed in the lecture). 
12. Provide the specifications of your best trained network. Fill-up Excel workbook 
(best_network_configuration.xlsx). 
13. Provide a confusion matrix for the best NN classifier system found in your experiments. 
14. Provide a short user guide for your program. 
15. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment. 
Criteria for marking 
 Documentation – 30% 
o Submit the trained weights of your best network (name it as best_weights.txt) 
o Generate a graph of the performance of your best performing network (MSE vs. 
Epochs) on the training set and test set. 
o Generate a confusion matrix of your best network 
o fill-up the Excel file, named checklist.xlsx
o fill-up the Excel file, named best_network_configuration.xlsx
o provide a short user guide for your program 
 System implementation – 70% 
Nothing follows. 
N.H.Reyes 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:DATA 2100代寫、代做Python語言編程
  • 下一篇:ME5701程序代寫、代做Matlab設計編程
  • ·代寫2530FNW、代做Python程序語言
  • ·代寫CIS5200、代做Java/Python程序語言
  • ·LCSCI4207代做、Java/Python程序代寫
  • ·代寫COP3502、Python程序設計代做
  • ·代做MLE 5217、代寫Python程序設計
  • ·代寫ISAD1000、代做Java/Python程序設計
  • ·代做COMP3811、C++/Python程序設計代寫
  • ·代寫SCIE1000、代做Python程序設計
  • ·代寫comp2022、代做c/c++,Python程序設計
  • ·CVEN9612代寫、代做Java/Python程序設計
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品素人一区二区| 91美女精品福利| 欧美一级精品大片| 开心九九激情九九欧美日韩精美视频电影 | 精品中文字幕一区二区| 久久亚洲影视婷婷| 成年人国产精品| 天天影视涩香欲综合网 | 国产日韩欧美不卡在线| 色综合天天综合网天天看片| 亚洲国产另类精品专区| 久久久欧美精品sm网站| 在线免费观看日本欧美| 国产伦精一区二区三区| 一区二区三区不卡在线观看| 欧美xxxxxxxxx| 在线精品亚洲一区二区不卡| 91蜜桃免费观看视频| 91蜜桃免费观看视频| 91在线观看一区二区| 五月开心婷婷久久| 免费看黄色91| 一区二区三区欧美| 亚洲国产精品久久人人爱蜜臀| 一区二区三区中文字幕电影 | 欧美一区二区三区免费在线看| 国产成人夜色高潮福利影视| 亚洲第四色夜色| 国产精品国产自产拍高清av王其| 欧美一级一区二区| 久久久国产精品麻豆| 中文字幕在线观看不卡视频| 国产亚洲欧洲997久久综合 | 成人欧美一区二区三区视频网页| 亚洲日本电影在线| 欧美国产一区二区| www国产精品av| 自拍偷拍国产亚洲| 美女诱惑一区二区| 男女男精品视频网| 成人黄页在线观看| 欧美精品第1页| 欧美亚洲综合另类| 欧美午夜精品久久久久久孕妇| 777xxx欧美| 欧美天堂一区二区三区| 精品理论电影在线| 亚洲综合av网| 亚洲一区自拍偷拍| 国产成人丝袜美腿| 欧美美女一区二区| 亚洲色图视频免费播放| 精品一区二区影视| 欧美色区777第一页| 欧美日韩激情一区二区三区| 欧美性xxxxxx少妇| 国产拍欧美日韩视频二区| 亚洲欧美另类图片小说| 一区二区在线观看视频在线观看| 亚洲精选视频在线| 国产在线看一区| 老司机免费视频一区二区三区| 成人午夜视频在线观看| 色综合久久久网| 欧美日韩精品福利| 亚洲欧洲成人自拍| 国产一区欧美二区| 精品少妇一区二区三区免费观看| 亚洲高清中文字幕| 欧美亚洲日本国产| 亚洲午夜激情av| 91官网在线观看| 26uuu久久天堂性欧美| 日韩精品一区第一页| 国产激情偷乱视频一区二区三区| 欧美色精品天天在线观看视频| 最新日韩在线视频| 成人精品国产免费网站| 国产清纯美女被跳蛋高潮一区二区久久w| 丝袜亚洲另类丝袜在线| 欧美日韩久久一区| 亚洲一区二区三区三| 欧美亚洲丝袜传媒另类| 日韩精品一级中文字幕精品视频免费观看 | 亚洲欧美激情小说另类| 成人动漫av在线| 中文字幕一区二区三区四区| 国产v综合v亚洲欧| 欧美男生操女生| 五月天久久比比资源色| 欧美肥胖老妇做爰| 极品美女销魂一区二区三区| 精品国产不卡一区二区三区| 亚洲a一区二区| 制服丝袜国产精品| 国产在线不卡视频| 综合久久国产九一剧情麻豆| 色综合激情久久| 亚洲va欧美va人人爽| 欧美电影免费观看高清完整版 | 亚洲精品一区二区三区蜜桃下载| 精品一区二区精品| 国产精品伦理在线| 欧美伦理电影网| 久久成人综合网| 亚洲天堂精品视频| 7777精品伊人久久久大香线蕉超级流畅| 男女男精品视频| 中文字幕va一区二区三区| 在线亚洲精品福利网址导航| 日韩高清在线一区| 欧美日韩的一区二区| 久草在线在线精品观看| 中文字幕av一区二区三区高| 在线观看日韩毛片| 国产一区二区三区黄视频| 亚洲男人电影天堂| 久久久久国产精品麻豆ai换脸| 日本久久精品电影| 国产精品69毛片高清亚洲| 久久女同精品一区二区| 色av成人天堂桃色av| 麻豆国产精品视频| 亚洲人精品午夜| 欧美电影免费观看高清完整版| 色婷婷久久久综合中文字幕| 激情另类小说区图片区视频区| 亚洲精品国产精品乱码不99| 日本一区二区三区四区| 欧美日本精品一区二区三区| 99re免费视频精品全部| 国产精品一区二区三区99| 婷婷综合在线观看| 亚洲免费三区一区二区| 中文无字幕一区二区三区| 69久久99精品久久久久婷婷| 91麻豆免费视频| 国产高清不卡二三区| 久久精品久久精品| 亚洲影院理伦片| 一区二区三区欧美激情| 中文字幕在线不卡一区| 日本一区免费视频| 久久亚洲精精品中文字幕早川悠里 | 欧美精品xxxxbbbb| 欧美亚洲尤物久久| 欧美系列一区二区| 欧美在线视频全部完| 99久久er热在这里只有精品15 | 亚洲欧洲99久久| 国产精品高清亚洲| 久久久99精品免费观看| 亚洲精品一区二区三区在线观看| 欧美一区二区视频在线观看2022| 欧亚一区二区三区| 欧美亚洲一区二区在线观看| 91国在线观看| 91黄色小视频| 欧美性猛交xxxx黑人交| 在线观看免费亚洲| 欧美日韩成人在线| 欧美一区二区三区在线电影| 欧美少妇性性性| 日韩欧美国产wwwww| 日韩三级av在线播放| 精品精品国产高清一毛片一天堂| 日韩精品一区二区三区四区视频| 欧美成人video| 国产日韩欧美一区二区三区综合| 国产精品久久网站| 一区二区三区在线视频免费| 亚洲国产精品嫩草影院| 日韩影视精彩在线| 国产99久久久国产精品潘金| 成人高清免费在线播放| 欧日韩精品视频| 精品99999| 中文字幕一区三区| 午夜久久久久久久久| 日本女人一区二区三区| 国产老肥熟一区二区三区| 成人午夜激情视频| 欧美日韩一本到| 精品福利一二区| 亚洲人成网站在线| 麻豆91小视频| 色综合久久久久| 日韩欧美的一区二区| 欧美国产乱子伦| 亚洲va国产va欧美va观看| 国产91精品精华液一区二区三区| 欧洲亚洲精品在线| 久久综合久久久久88| 亚洲特黄一级片| 久久精品噜噜噜成人88aⅴ| 99久久精品免费| 欧美成人伊人久久综合网| 国产精品久久久久一区二区三区共| 一区二区三区波多野结衣在线观看| 狠狠色丁香久久婷婷综合丁香|