合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫159.740編程、代做c/c++,Python程序
        代寫159.740編程、代做c/c++,Python程序

        時(shí)間:2024-11-04  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        159.740 Intelligent Systems
        Assignment #2 
        N.H.Reyes 
        Letter Recognition using Deep Neural Nets with Softmax Units 
        Deadline: 4th of November 
        Instructions: 
        You are allowed to work in a group of 2 members for this assignment. 
        Your task is to write a program that implements and tests a multi-layer feed-forward network for 
        recognising characters defined in the UCI machine learning repository: 
        http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
        Requirements: 
        1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-up 
        code that will help you get started quickly with the assignment is provided via Stream. 
        2. You may utilise/consult codes available in books and websites provided that you cite them 
        properly, explain the codes clearly, and incorporate them with the start-up codes provided. 
        3. Implement a multi-layer feed-forward network using backpropagation learning and test it on the 
        given problem domain using different network configurations and parameter settings. There 
        should be at least 2 hidden layers in your neural network. 
        h21 h11 X1
        X2
        F1
        F2 h12 h22
        OF1
        OF2
        δh21
        δh22 δh12
        δf1
        δf2
        δh11
        … … … … 
        X16
        Fm Hi Hj
        OFm
        Input node
        Legend: 
        hidden node
        output node = softmax unit
         Note that all nodes, except the input nodes have a bias node attached to it. 
        159.740 Intelligent Systems
        Assignment #2 
        N.H.Reyes 
        A. Inputs 
         16 primitive numerical attributes (statistical moments and edge counts) 
         The input values in the data set have been scaled to fit into a range of integer values 
        from 0 through 15. It is up to you if you want to normalise the inputs before feeding 
        them to your network. 
        B. Data sets 
         Use the data set downloadable from: 
         Training set: use the first 16,000 
         Test set/Validation set: use the remaining 4,000 
         Submit your training data, validation/test data in separate files. 
        C. Performance measure: 
         Mean Squared Error (MSE) 
         Percentage of Good Classification (PGC) 
         Confusion Matrix (only for the best Neural Network configuration found) 
        D. Training 
         Provide a facility for shuffling data before feeding it to the network during training 
         Provide a facility for continuing network training after loading weights from file (do not 
        reset the weights). 
         Provide a facility for training the network continuously until either the maximum 
        epochs have been reached, or the target percentage of good classification has been met. 
         For each training epoch, record the Mean Squared Error and the Percentage of Good 
        Classification in a text file. You need this to plot the results of training later, to 
        compare the effects of the parameter settings and the architecture of your network. 
        E. Testing the Network 
         Calculate the performance of the network on the Test set in terms of both the MSE and 
        PGC. 
        F. Network Architecture 
         It is up to you to determine the number of hidden layers and number of hidden nodes 
        per hidden layer in your network. The minimum number of hidden layers is 2. 
         Use softmax units at the output layer 
         Experiment with ReLU and tanh as the activation functions of your hidden units 
         Determine the weight-update formulas based on the activation functions used 
        4. Provide an interface in your program for testing the network using an input string consisting of 
        the 16 attributes. The results should indicate the character classification, and the 26 actual 
        numeric outputs of the network. (the start-up codes partly include this functionality already, for 
        a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for the 
        multiple hidden layer architecture that you have designed). 
        5. Provide an interface in your program for: 
        A. Reading the entire data set 
        B. Initialising the network 
        C. Loading trained weights 
        D. Saving trained weights 
        E. Training the network up to a maximum number of epochs 
        159.740 Intelligent Systems
        Assignment #2 
        F. Testing the network on a specified test set (from a file) 
        G. Shuffling the training set. 
        6. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the best 
        configuration that delivered the best experiment results. 
        7. Use a fixed random seed number (123) so that any randomisation can be replicated empirically. 
        8. It is up to you to write the main program, and any classes or data structures that you may 
        require. 
        9. You may choose to use a momentum term or regularization term, as part of backpropagation 
        learning. Indicate in your documentation, if you are using this technique. 
        10. You need to modify the weight-update rules to reflect the correct derivatives of the activation 
        function used in your network architecture. 
        11. Provide graphs in Excel showing the network performance on training data and test data 
        (similar to the graphs discussed in the lecture). 
        12. Provide the specifications of your best trained network. Fill-up Excel workbook 
        (best_network_configuration.xlsx). 
        13. Provide a confusion matrix for the best NN classifier system found in your experiments. 
        14. Provide a short user guide for your program. 
        15. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment. 
        Criteria for marking 
         Documentation – 30% 
        o Submit the trained weights of your best network (name it as best_weights.txt) 
        o Generate a graph of the performance of your best performing network (MSE vs. 
        Epochs) on the training set and test set. 
        o Generate a confusion matrix of your best network 
        o fill-up the Excel file, named checklist.xlsx
        o fill-up the Excel file, named best_network_configuration.xlsx
        o provide a short user guide for your program 
         System implementation – 70% 
        Nothing follows. 
        N.H.Reyes 

        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





         

        掃一掃在手機(jī)打開當(dāng)前頁(yè)
      1. 上一篇:DATA 2100代寫、代做Python語(yǔ)言編程
      2. 下一篇:ME5701程序代寫、代做Matlab設(shè)計(jì)編程
      3. ·代寫2530FNW、代做Python程序語(yǔ)言
      4. ·代寫CIS5200、代做Java/Python程序語(yǔ)言
      5. ·LCSCI4207代做、Java/Python程序代寫
      6. ·代寫COP3502、Python程序設(shè)計(jì)代做
      7. ·代做MLE 5217、代寫Python程序設(shè)計(jì)
      8. ·代寫ISAD1000、代做Java/Python程序設(shè)計(jì)
      9. ·代做COMP3811、C++/Python程序設(shè)計(jì)代寫
      10. ·代寫SCIE1000、代做Python程序設(shè)計(jì)
      11. ·代寫comp2022、代做c/c++,Python程序設(shè)計(jì)
      12. ·CVEN9612代寫、代做Java/Python程序設(shè)計(jì)
      13. 合肥生活資訊

        合肥圖文信息
        出評(píng) 開團(tuán)工具
        出評(píng) 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線)
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
      14. 上海廠房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        主站蜘蛛池模板: 夜夜爽一区二区三区精品| 一区二区三区视频网站| 亚洲高清成人一区二区三区| 韩国福利一区二区三区高清视频| 日韩一区精品视频一区二区| 一区二区免费国产在线观看| 在线一区二区观看| 亚洲一区二区三区在线观看网站| 亚洲国产成人一区二区三区| 国产美女视频一区| 国产成人无码精品一区在线观看| 在线视频一区二区三区四区| 99精品国产一区二区三区2021| 免费日本一区二区| 国产伦精品一区二区三区| 亚洲国产精品一区二区第四页| 国产在线视频一区二区三区| 性色AV一区二区三区无码| 亚洲综合色一区二区三区| 日韩一区二区视频| 老熟妇高潮一区二区三区| 无码人妻一区二区三区兔费| 亚洲午夜精品一区二区麻豆| 成人丝袜激情一区二区| 国产在线一区二区杨幂| 国产主播一区二区三区在线观看| 精品国产亚洲一区二区三区在线观看| 香蕉久久ac一区二区三区| 国产伦精品一区二区三区免费迷| 国产日韩视频一区| 一区视频免费观看| 激情综合一区二区三区| 亚洲AV综合色区无码一区| 日韩精品视频一区二区三区| 国产福利一区二区三区视频在线| 亚洲欧美国产国产综合一区| 制服美女视频一区| 真实国产乱子伦精品一区二区三区 | 国产美女av在线一区| 亚洲韩国精品无码一区二区三区| 国产婷婷色一区二区三区|