合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做NEKN96、代寫c/c++,Java程序設計
        代做NEKN96、代寫c/c++,Java程序設計

        時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Homework Assignment 1
        NEKN96
        Guidelines
        1. Upload the HWA in .zip format to Canvas before the 2nd of October, 23:59, and only
        upload one HWA for each group. The .zip ffle should contain two parts:
        - A report in .pdf format, which will be corrected.
        - The code you used to create the output/estimates for the report. The code itself will
        not be graded/corrected and is only required to conffrm your work. The easiest is to add
        the whole project folder you used to the zip ffle.
        1 However, if you have used online tools,
        sharing a link to your work is also ffne.
        2
        2. The assignment should be done in groups of 3-4 people, pick groups at
        Canvas → People → Groups.
        3
        3. Double-check that each group member’s name and ID number are included in the .pdf ffle.
        4. To receive your ffnal grade on the course, a PASS is required on this HWA.
        - If a revision is required, the comments must be addressed, and an updated version should
        be mailed to ioannis.tzoumas@nek.lu.se. However, you are only guaranteed an additional
        evaluation of the assignment in connection to an examination period.
        4
        You will have a lot of ffexibility in how you want to solve each part of the assignment, and all things
        that are required to get a PASS are denoted in bullet points:

        Beware, some things require a lot of work, but you should still only include the ffnal table or ffgure
        and not all intermediary steps. If uncertain, add a sentence or two about how you reached your
        conclusions, but do not add supplementary material. Only include the tables/ffgures explicitly asked
        for in the bullet points.
        Good Luck!
        1Before uploading the code, copy-paste the project folder to a new directory and try to re-run it. Does it still work?
        2Make sure the repository/link is public/working before sharing it.
        3Rare exceptions can be made if required. 
        4Next is the retake on December 12th, 2024.
        1NEKN96
        Assignment
        Our goal is to put into practice the separation of population vs. sample using a linear regression
        model. This hands-on approach will allow us to generate a sample from a known Population Regression
        Function (PRF) and observe how breakages of the Gauss-Markov assumptions can affect our sample
        estimates.
        We will assume that the PRF is:
        Y = α + β1X1 + β2X2 + β3X3 + ε (1)
        However, to break the assumptions, we need to add:
        A0: Non-linearities
        A2: Heteroscedasticity
        A4: Endogeneity
        A7: Non-normality in a small sample
        A3 autocorrelation will be covered in HWA2, time-series modelling.
        Q1 - All Assumptions Fulfflled
        Let’s generate a ”correct” linear regression model. Generate a PRF with the parameters:
        α = 0.7, β1 = −1, β2 = 2, β3 = 0.5, ε ∼ N(0, 4), Xi
         iid∼ N(0, 1). (2)
        The example code is also available in Canvas
        Setup Parameters
        n = 30
        p = 3
        beta = [-1, 2, 0.5]
        alpha = 0.7
        Simulate X and Y, using normally distributed errors
        5
        np. random . seed ( seed =96)
        X = np. random . normal (loc=0, scale =1, size =(n, p))
        eps = np. random . normal (loc =0, scale =2, size =n)
        y = alpha + X @ beta + eps
        Run the correctly speciffed linear regression model
        result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
        result_OLS . summary ()
        ˆ Add a well-formatted summary table
        ˆ Interpret the estimate of βˆ
        2 and the R2
        .
        5
        Important: The np.random.seed() will ensure that we all get the same result. In other words, ensure that we are
        using the ”correct” seed and that we don’t generate anything else ”random” before this simulation.
        2NEKN96
        ˆ In a paragraph, discuss if the estimates are consistent with the population regression function.
        Why, why not?
        ˆ Re-run the model, increasing the sample size to n = 10000. In a paragraph, explain what happens
        to the parameter estimates, and why doesn’t R2 get closer and closer to 1 as n increases?
        Q2 - Endogeneity
        What if we (wrongly) assume that the PRF is:
        Y = α + β1X1 + β2X2 + ε (3)
        Use the same seed and setup as in Q1, and now estimate both the ”correct” and the ”wrong” model:
        result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
        result_OLS . summary ()
        result_OLS_endog = OLS ( endog =y, exog = add_constant (X[:,0:2 ])). fit ()
        result_OLS_endog . summary ()
        ˆ Shouldn’t this imply an omitted variable bias? Show mathematically why it won’t be a problem
        in this speciffc setup (see lecture notes ”Part 2 - Linear Regression”).
        Q3 - Non-Normality and Non-Linearity
        Let’s simulate a sample of n = 3000, keeping the same parameters, but adding kurtosis and skewness
        to the error terms:
        6
        n = 3000
        X = np. random . normal (loc=0, scale =1, size =(n, p))
        eps = np. random . normal (loc =0, scale =2, size =n)
        eps_KU = np. sign ( eps) * eps **2
        eps_SKandKU_tmp = np. where ( eps_KU > 0, eps_KU , eps_KU *2)
        eps_SKandKU = eps_SKandKU_tmp - np. mean ( eps_SKandKU_tmp )
        Now make the dependent variable into a non-linear relationship
        y_exp = np.exp( alpha + X @ beta + eps_SKandKU )
        ˆ Create three ffgures:
        1. Scatterplot of y exp against x 1
        2. Scatterplot of ln(y exp) against x 1
        3. plt.plot(eps SKandKU)
        The ffgure(s) should have a descriptive caption, and all labels and titles should be clear to the
        reader.
        Estimate two linear regression models:
        6The manual addition of kurtosis and skewness will make E [ε] ̸= 0, so we need to remove the average from the errors
        to ensure that the exogeneity assumption is still fulfflled.
        3NEKN96
        res_OLS_nonLinear = OLS( endog =y_exp , exog = add_constant (X)). fit ()
        res_OLS_transformed = OLS ( endog =np.log ( y_exp ), exog = add_constant (X)). fit ()
        ˆ Add the regression tables of the non-transformed and transformed regressions
        ˆ In a paragraph, does the transformed model fft the population regression function?
        Finally, re-run the simulations and transformed estimation with a small sample, n = 30
        ˆ Add the regression table of the transformed small-sample estimate
        ˆ Now, re-do this estimate several times
        7 and observe how the parameter estimates behave. Do
        the non-normal errors seem to be a problem in this spot?
        Hint: Do the parameters seem centered around the population values? Do we reject H0 : βi = 0?
        ˆ In a paragraph, discuss why assuming a non-normal distribution makes it hard to ffnd the
        distributional form under a TRUE null hypothesis, H0 ⇒ Distribution?
        Hint: Why is the central limit theorem key for most inferences?
        Q4 - Heteroscedasticity
        Suggest a way to create heteroscedasticity in the population regression function.
        8
        ˆ Write down the updated population regression function in mathematical notation
        ˆ Estimate the regression function assuming homoscedasticity (as usual)
        ˆ Adjust the standard errors using a Heteroscedastic Autocorrelated Consistent (HAC) estimator
        (clearly state which HAC estimator you use)
        ˆ Add the tables of both the unadjusted and adjusted estimates
        ˆ In a paragraph, discuss if the HAC adjustment to the standard errors makes sense given the
        way you created the heteroscedasticity. Did the HAC adjustment seem to ffx the problem?
        Hint: Bias? Efffcient?
        7Using a random seed for each estimate.
        8Tip: Double-check by simulating the model and plotting the residuals against one of the regressors. Does it look
        heteroscedastic?


        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






         

        掃一掃在手機打開當前頁
      1. 上一篇:ITMF7.120代寫、代做Python編程設計
      2. 下一篇:代做COMP 412、代寫python設計編程
      3. ·CRICOS編程代做、代寫Java程序設計
      4. ·MDSB22代做、代寫C++,Java程序設計
      5. ·代做Electric Vehicle Adoption Tools 、代寫Java程序設計
      6. ·代做INFO90001、代寫c/c++,Java程序設計
      7. · COMP1711代寫、代做C++,Java程序設計
      8. ·GameStonk Share Trading代做、java程序設計代寫
      9. ·CSIT213代做、代寫Java程序設計
      10. ·CHC5223代做、java程序設計代寫
      11. ·代做INFS 2042、Java程序設計代寫
      12. ·代寫CPT206、Java程序設計代做
      13. 合肥生活資訊

        合肥圖文信息
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
      14. 幣安app官網下載 短信驗證碼

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 中文人妻av高清一区二区| 中文字幕一区二区三区精彩视频| 无码AV动漫精品一区二区免费| 在线观看免费视频一区| 国产乱码精品一区二区三区麻豆| 久久久无码精品国产一区 | а天堂中文最新一区二区三区| 色狠狠一区二区三区香蕉| 中文字幕一区日韩在线视频| 视频在线一区二区三区| 欧洲亚洲综合一区二区三区| 中文字幕av一区| 亚洲熟女综合色一区二区三区| 久久一本一区二区三区| 久久久精品一区二区三区| 伊人精品视频一区二区三区| 久久一区二区免费播放| 国模丽丽啪啪一区二区| 国产不卡视频一区二区三区| 日韩一区二区三区免费播放| 欧洲亚洲综合一区二区三区| 国产一区二区三区在线观看免费 | 国产日韩一区二区三区| 精品日韩亚洲AV无码一区二区三区| 亚洲av无码一区二区三区乱子伦 | 国产一区二区三区在线观看影院| 在线观看中文字幕一区| 精品一区二区三区免费毛片| 国产主播一区二区三区在线观看 | 熟女少妇丰满一区二区| 亚洲色欲一区二区三区在线观看| 久久久精品一区二区三区| 69福利视频一区二区| 国产一区二区三区乱码网站| 无码中文字幕乱码一区| 美女免费视频一区二区三区| 国产精品毛片a∨一区二区三区| 国产丝袜美女一区二区三区| 亚洲天堂一区在线| 国模大胆一区二区三区| 精品国产一区二区三区久久蜜臀 |