99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做NEKN96、代寫c/c++,Java程序設計
代做NEKN96、代寫c/c++,Java程序設計

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Homework Assignment 1
NEKN96
Guidelines
1. Upload the HWA in .zip format to Canvas before the 2nd of October, 23:59, and only
upload one HWA for each group. The .zip ffle should contain two parts:
- A report in .pdf format, which will be corrected.
- The code you used to create the output/estimates for the report. The code itself will
not be graded/corrected and is only required to conffrm your work. The easiest is to add
the whole project folder you used to the zip ffle.
1 However, if you have used online tools,
sharing a link to your work is also ffne.
2
2. The assignment should be done in groups of 3-4 people, pick groups at
Canvas → People → Groups.
3
3. Double-check that each group member’s name and ID number are included in the .pdf ffle.
4. To receive your ffnal grade on the course, a PASS is required on this HWA.
- If a revision is required, the comments must be addressed, and an updated version should
be mailed to ioannis.tzoumas@nek.lu.se. However, you are only guaranteed an additional
evaluation of the assignment in connection to an examination period.
4
You will have a lot of ffexibility in how you want to solve each part of the assignment, and all things
that are required to get a PASS are denoted in bullet points:

Beware, some things require a lot of work, but you should still only include the ffnal table or ffgure
and not all intermediary steps. If uncertain, add a sentence or two about how you reached your
conclusions, but do not add supplementary material. Only include the tables/ffgures explicitly asked
for in the bullet points.
Good Luck!
1Before uploading the code, copy-paste the project folder to a new directory and try to re-run it. Does it still work?
2Make sure the repository/link is public/working before sharing it.
3Rare exceptions can be made if required. 
4Next is the retake on December 12th, 2024.
1NEKN96
Assignment
Our goal is to put into practice the separation of population vs. sample using a linear regression
model. This hands-on approach will allow us to generate a sample from a known Population Regression
Function (PRF) and observe how breakages of the Gauss-Markov assumptions can affect our sample
estimates.
We will assume that the PRF is:
Y = α + β1X1 + β2X2 + β3X3 + ε (1)
However, to break the assumptions, we need to add:
A0: Non-linearities
A2: Heteroscedasticity
A4: Endogeneity
A7: Non-normality in a small sample
A3 autocorrelation will be covered in HWA2, time-series modelling.
Q1 - All Assumptions Fulfflled
Let’s generate a ”correct” linear regression model. Generate a PRF with the parameters:
α = 0.7, β1 = −1, β2 = 2, β3 = 0.5, ε ∼ N(0, 4), Xi
 iid∼ N(0, 1). (2)
The example code is also available in Canvas
Setup Parameters
n = 30
p = 3
beta = [-1, 2, 0.5]
alpha = 0.7
Simulate X and Y, using normally distributed errors
5
np. random . seed ( seed =96)
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
y = alpha + X @ beta + eps
Run the correctly speciffed linear regression model
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
ˆ Add a well-formatted summary table
ˆ Interpret the estimate of βˆ
2 and the R2
.
5
Important: The np.random.seed() will ensure that we all get the same result. In other words, ensure that we are
using the ”correct” seed and that we don’t generate anything else ”random” before this simulation.
2NEKN96
ˆ In a paragraph, discuss if the estimates are consistent with the population regression function.
Why, why not?
ˆ Re-run the model, increasing the sample size to n = 10000. In a paragraph, explain what happens
to the parameter estimates, and why doesn’t R2 get closer and closer to 1 as n increases?
Q2 - Endogeneity
What if we (wrongly) assume that the PRF is:
Y = α + β1X1 + β2X2 + ε (3)
Use the same seed and setup as in Q1, and now estimate both the ”correct” and the ”wrong” model:
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
result_OLS_endog = OLS ( endog =y, exog = add_constant (X[:,0:2 ])). fit ()
result_OLS_endog . summary ()
ˆ Shouldn’t this imply an omitted variable bias? Show mathematically why it won’t be a problem
in this speciffc setup (see lecture notes ”Part 2 - Linear Regression”).
Q3 - Non-Normality and Non-Linearity
Let’s simulate a sample of n = 3000, keeping the same parameters, but adding kurtosis and skewness
to the error terms:
6
n = 3000
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
eps_KU = np. sign ( eps) * eps **2
eps_SKandKU_tmp = np. where ( eps_KU > 0, eps_KU , eps_KU *2)
eps_SKandKU = eps_SKandKU_tmp - np. mean ( eps_SKandKU_tmp )
Now make the dependent variable into a non-linear relationship
y_exp = np.exp( alpha + X @ beta + eps_SKandKU )
ˆ Create three ffgures:
1. Scatterplot of y exp against x 1
2. Scatterplot of ln(y exp) against x 1
3. plt.plot(eps SKandKU)
The ffgure(s) should have a descriptive caption, and all labels and titles should be clear to the
reader.
Estimate two linear regression models:
6The manual addition of kurtosis and skewness will make E [ε] ̸= 0, so we need to remove the average from the errors
to ensure that the exogeneity assumption is still fulfflled.
3NEKN96
res_OLS_nonLinear = OLS( endog =y_exp , exog = add_constant (X)). fit ()
res_OLS_transformed = OLS ( endog =np.log ( y_exp ), exog = add_constant (X)). fit ()
ˆ Add the regression tables of the non-transformed and transformed regressions
ˆ In a paragraph, does the transformed model fft the population regression function?
Finally, re-run the simulations and transformed estimation with a small sample, n = 30
ˆ Add the regression table of the transformed small-sample estimate
ˆ Now, re-do this estimate several times
7 and observe how the parameter estimates behave. Do
the non-normal errors seem to be a problem in this spot?
Hint: Do the parameters seem centered around the population values? Do we reject H0 : βi = 0?
ˆ In a paragraph, discuss why assuming a non-normal distribution makes it hard to ffnd the
distributional form under a TRUE null hypothesis, H0 ⇒ Distribution?
Hint: Why is the central limit theorem key for most inferences?
Q4 - Heteroscedasticity
Suggest a way to create heteroscedasticity in the population regression function.
8
ˆ Write down the updated population regression function in mathematical notation
ˆ Estimate the regression function assuming homoscedasticity (as usual)
ˆ Adjust the standard errors using a Heteroscedastic Autocorrelated Consistent (HAC) estimator
(clearly state which HAC estimator you use)
ˆ Add the tables of both the unadjusted and adjusted estimates
ˆ In a paragraph, discuss if the HAC adjustment to the standard errors makes sense given the
way you created the heteroscedasticity. Did the HAC adjustment seem to ffx the problem?
Hint: Bias? Efffcient?
7Using a random seed for each estimate.
8Tip: Double-check by simulating the model and plotting the residuals against one of the regressors. Does it look
heteroscedastic?


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:ITMF7.120代寫、代做Python編程設計
  • 下一篇:代做COMP 412、代寫python設計編程
  • ·CRICOS編程代做、代寫Java程序設計
  • ·MDSB22代做、代寫C++,Java程序設計
  • ·代做Electric Vehicle Adoption Tools 、代寫Java程序設計
  • ·代做INFO90001、代寫c/c++,Java程序設計
  • · COMP1711代寫、代做C++,Java程序設計
  • ·GameStonk Share Trading代做、java程序設計代寫
  • ·CSIT213代做、代寫Java程序設計
  • ·CHC5223代做、java程序設計代寫
  • ·代做INFS 2042、Java程序設計代寫
  • ·代寫CPT206、Java程序設計代做
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                久久一日本道色综合| 亚洲一区二区不卡免费| 日韩在线a电影| 日韩一区二区三区视频在线| 日本午夜精品视频在线观看| 欧美一卡2卡3卡4卡| 免费在线观看不卡| 国产精品视频一二| 欧美三级日本三级少妇99| 国产欧美久久久精品影院| 国产精品乱子久久久久| 成人午夜短视频| 亚洲欧美一区二区三区久本道91| 在线综合亚洲欧美在线视频| 亚洲午夜三级在线| 欧美少妇性性性| 韩国av一区二区| 亚洲精品日产精品乱码不卡| 91精品国产免费久久综合| 成人做爰69片免费看网站| 一区二区欧美在线观看| 久久久久一区二区三区四区| 日本韩国一区二区| 国产精品99久久久久久宅男| 亚洲一区二区精品视频| 国产欧美日韩另类一区| 日韩欧美成人一区二区| 在线精品视频一区二区| 国产91清纯白嫩初高中在线观看| 日精品一区二区| 性欧美疯狂xxxxbbbb| 中文字幕在线不卡视频| 久久久久国产精品麻豆ai换脸| 欧美久久久久久久久| 色视频成人在线观看免| 成人app在线| 成人午夜激情视频| 成人免费观看男女羞羞视频| 国产一区二区女| 国内国产精品久久| 免费成人深夜小野草| 亚洲国产欧美在线人成| 亚洲在线视频免费观看| 亚洲欧美一区二区久久| 国产精品乱人伦| 国产精品美女一区二区在线观看| 精品国产乱码久久久久久老虎| 91精品国产色综合久久ai换脸 | 亚洲成人免费影院| 国产精品理论片在线观看| 欧美精品一区二区三区四区| 日韩三级伦理片妻子的秘密按摩| 欧美日产国产精品| 91精品中文字幕一区二区三区| 欧美在线色视频| 欧美日韩国产三级| 欧美一区二区精品在线| 欧美videos大乳护士334| 欧美另类高清zo欧美| 欧美一区二区三区日韩视频| 日韩欧美一二区| 久久精品人人做人人综合 | 一区二区中文视频| 亚洲欧美在线视频| 亚洲激情男女视频| 日韩黄色免费网站| 国产在线一区观看| 91视频国产观看| 欧美猛男男办公室激情| 日韩手机在线导航| 国产精品午夜免费| 亚洲国产视频a| 国产九色sp调教91| 欧亚洲嫩模精品一区三区| 337p亚洲精品色噜噜| 精品成人免费观看| 中文字幕不卡在线观看| 亚洲精品菠萝久久久久久久| 日本不卡一区二区| 成人激情免费网站| 91精品国产手机| 国产精品乱人伦一区二区| 午夜精品影院在线观看| 国产91精品久久久久久久网曝门 | 亚洲欧美经典视频| 日韩激情中文字幕| 99国产精品99久久久久久| 日韩一区二区三区四区 | 久久精品久久精品| 99精品在线免费| 精品少妇一区二区三区免费观看| 国产精品情趣视频| 久久成人羞羞网站| 欧美高清视频www夜色资源网| 国产精品剧情在线亚洲| 久久精品久久综合| 欧美另类久久久品| 亚洲一区在线免费观看| 成人自拍视频在线观看| 精品国偷自产国产一区| 亚洲成人精品影院| 94-欧美-setu| 国产日产欧美一区二区视频| 美腿丝袜亚洲综合| 在线播放国产精品二区一二区四区| 久久精品欧美一区二区三区麻豆| 同产精品九九九| 色婷婷av一区二区三区软件| 久久久久久久网| 蓝色福利精品导航| 91精品国产免费久久综合| 亚洲国产视频一区二区| 色偷偷一区二区三区| 亚洲视频一区在线| 色婷婷亚洲精品| 亚洲精品五月天| 色屁屁一区二区| 亚洲综合一二三区| 欧美三级电影在线观看| 夜夜亚洲天天久久| 欧美日韩一区二区欧美激情| 亚洲精品欧美激情| 欧美日韩国产高清一区| 亚洲第一综合色| 7777精品伊人久久久大香线蕉超级流畅| 亚洲精品久久7777| 欧美日韩国产影片| 青青草成人在线观看| 欧美一区二区三区系列电影| 美女视频一区在线观看| 精品美女被调教视频大全网站| 美日韩一区二区三区| 久久久久久夜精品精品免费| 国产成人aaa| 亚洲最快最全在线视频| 欧美日韩不卡在线| 激情久久五月天| 国产精品视频免费看| 在线亚洲一区观看| 麻豆91精品91久久久的内涵| 精品日本一线二线三线不卡| 高清久久久久久| 亚洲精品乱码久久久久久| 91.com视频| 岛国精品在线播放| 亚洲国产另类av| 久久久蜜桃精品| 91麻豆免费看片| 麻豆精品一区二区三区| 日本一区二区三区久久久久久久久不 | 欧美日韩一二三区| 国产制服丝袜一区| 亚洲免费伊人电影| 精品日产卡一卡二卡麻豆| 成人av在线看| 秋霞午夜av一区二区三区| 国产欧美一区视频| 欧美日韩一区二区三区在线| 另类综合日韩欧美亚洲| 国产精品护士白丝一区av| 欧美日韩在线播放一区| 国产高清在线精品| 亚洲v中文字幕| 日本一区二区三区久久久久久久久不 | 日韩精品一级二级| 久久精品欧美一区二区三区麻豆| 日本韩国一区二区| 国模大尺度一区二区三区| 亚洲精品第一国产综合野| 久久在线观看免费| 91精品在线免费| 91天堂素人约啪| 国产精品一二三四区| 亚洲.国产.中文慕字在线| 国产精品家庭影院| 久久久久亚洲蜜桃| 精品国产一区二区三区久久影院| 91福利在线导航| 99久精品国产| 成人av网站在线观看免费| 国精产品一区一区三区mba视频| 亚洲成av人片一区二区三区| 中文字幕一区免费在线观看| 精品久久五月天| 日韩欧美国产wwwww| 91麻豆精品国产91久久久使用方法 | 黄色小说综合网站| 午夜欧美视频在线观看| 亚洲女与黑人做爰| 亚洲四区在线观看| 欧美激情一区二区三区四区| 日韩欧美区一区二| 欧美成人精品二区三区99精品| 欧美亚洲国产一区二区三区va | 5858s免费视频成人| 日本精品免费观看高清观看| eeuss鲁片一区二区三区| 国产99精品视频| 国产传媒日韩欧美成人| 国产福利一区二区三区在线视频|