99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做NEKN96、代寫c/c++,Java程序設計
代做NEKN96、代寫c/c++,Java程序設計

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Homework Assignment 1
NEKN96
Guidelines
1. Upload the HWA in .zip format to Canvas before the 2nd of October, 23:59, and only
upload one HWA for each group. The .zip ffle should contain two parts:
- A report in .pdf format, which will be corrected.
- The code you used to create the output/estimates for the report. The code itself will
not be graded/corrected and is only required to conffrm your work. The easiest is to add
the whole project folder you used to the zip ffle.
1 However, if you have used online tools,
sharing a link to your work is also ffne.
2
2. The assignment should be done in groups of 3-4 people, pick groups at
Canvas → People → Groups.
3
3. Double-check that each group member’s name and ID number are included in the .pdf ffle.
4. To receive your ffnal grade on the course, a PASS is required on this HWA.
- If a revision is required, the comments must be addressed, and an updated version should
be mailed to ioannis.tzoumas@nek.lu.se. However, you are only guaranteed an additional
evaluation of the assignment in connection to an examination period.
4
You will have a lot of ffexibility in how you want to solve each part of the assignment, and all things
that are required to get a PASS are denoted in bullet points:

Beware, some things require a lot of work, but you should still only include the ffnal table or ffgure
and not all intermediary steps. If uncertain, add a sentence or two about how you reached your
conclusions, but do not add supplementary material. Only include the tables/ffgures explicitly asked
for in the bullet points.
Good Luck!
1Before uploading the code, copy-paste the project folder to a new directory and try to re-run it. Does it still work?
2Make sure the repository/link is public/working before sharing it.
3Rare exceptions can be made if required. 
4Next is the retake on December 12th, 2024.
1NEKN96
Assignment
Our goal is to put into practice the separation of population vs. sample using a linear regression
model. This hands-on approach will allow us to generate a sample from a known Population Regression
Function (PRF) and observe how breakages of the Gauss-Markov assumptions can affect our sample
estimates.
We will assume that the PRF is:
Y = α + β1X1 + β2X2 + β3X3 + ε (1)
However, to break the assumptions, we need to add:
A0: Non-linearities
A2: Heteroscedasticity
A4: Endogeneity
A7: Non-normality in a small sample
A3 autocorrelation will be covered in HWA2, time-series modelling.
Q1 - All Assumptions Fulfflled
Let’s generate a ”correct” linear regression model. Generate a PRF with the parameters:
α = 0.7, β1 = −1, β2 = 2, β3 = 0.5, ε ∼ N(0, 4), Xi
 iid∼ N(0, 1). (2)
The example code is also available in Canvas
Setup Parameters
n = 30
p = 3
beta = [-1, 2, 0.5]
alpha = 0.7
Simulate X and Y, using normally distributed errors
5
np. random . seed ( seed =96)
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
y = alpha + X @ beta + eps
Run the correctly speciffed linear regression model
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
ˆ Add a well-formatted summary table
ˆ Interpret the estimate of βˆ
2 and the R2
.
5
Important: The np.random.seed() will ensure that we all get the same result. In other words, ensure that we are
using the ”correct” seed and that we don’t generate anything else ”random” before this simulation.
2NEKN96
ˆ In a paragraph, discuss if the estimates are consistent with the population regression function.
Why, why not?
ˆ Re-run the model, increasing the sample size to n = 10000. In a paragraph, explain what happens
to the parameter estimates, and why doesn’t R2 get closer and closer to 1 as n increases?
Q2 - Endogeneity
What if we (wrongly) assume that the PRF is:
Y = α + β1X1 + β2X2 + ε (3)
Use the same seed and setup as in Q1, and now estimate both the ”correct” and the ”wrong” model:
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
result_OLS_endog = OLS ( endog =y, exog = add_constant (X[:,0:2 ])). fit ()
result_OLS_endog . summary ()
ˆ Shouldn’t this imply an omitted variable bias? Show mathematically why it won’t be a problem
in this speciffc setup (see lecture notes ”Part 2 - Linear Regression”).
Q3 - Non-Normality and Non-Linearity
Let’s simulate a sample of n = 3000, keeping the same parameters, but adding kurtosis and skewness
to the error terms:
6
n = 3000
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
eps_KU = np. sign ( eps) * eps **2
eps_SKandKU_tmp = np. where ( eps_KU > 0, eps_KU , eps_KU *2)
eps_SKandKU = eps_SKandKU_tmp - np. mean ( eps_SKandKU_tmp )
Now make the dependent variable into a non-linear relationship
y_exp = np.exp( alpha + X @ beta + eps_SKandKU )
ˆ Create three ffgures:
1. Scatterplot of y exp against x 1
2. Scatterplot of ln(y exp) against x 1
3. plt.plot(eps SKandKU)
The ffgure(s) should have a descriptive caption, and all labels and titles should be clear to the
reader.
Estimate two linear regression models:
6The manual addition of kurtosis and skewness will make E [ε] ̸= 0, so we need to remove the average from the errors
to ensure that the exogeneity assumption is still fulfflled.
3NEKN96
res_OLS_nonLinear = OLS( endog =y_exp , exog = add_constant (X)). fit ()
res_OLS_transformed = OLS ( endog =np.log ( y_exp ), exog = add_constant (X)). fit ()
ˆ Add the regression tables of the non-transformed and transformed regressions
ˆ In a paragraph, does the transformed model fft the population regression function?
Finally, re-run the simulations and transformed estimation with a small sample, n = 30
ˆ Add the regression table of the transformed small-sample estimate
ˆ Now, re-do this estimate several times
7 and observe how the parameter estimates behave. Do
the non-normal errors seem to be a problem in this spot?
Hint: Do the parameters seem centered around the population values? Do we reject H0 : βi = 0?
ˆ In a paragraph, discuss why assuming a non-normal distribution makes it hard to ffnd the
distributional form under a TRUE null hypothesis, H0 ⇒ Distribution?
Hint: Why is the central limit theorem key for most inferences?
Q4 - Heteroscedasticity
Suggest a way to create heteroscedasticity in the population regression function.
8
ˆ Write down the updated population regression function in mathematical notation
ˆ Estimate the regression function assuming homoscedasticity (as usual)
ˆ Adjust the standard errors using a Heteroscedastic Autocorrelated Consistent (HAC) estimator
(clearly state which HAC estimator you use)
ˆ Add the tables of both the unadjusted and adjusted estimates
ˆ In a paragraph, discuss if the HAC adjustment to the standard errors makes sense given the
way you created the heteroscedasticity. Did the HAC adjustment seem to ffx the problem?
Hint: Bias? Efffcient?
7Using a random seed for each estimate.
8Tip: Double-check by simulating the model and plotting the residuals against one of the regressors. Does it look
heteroscedastic?


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:ITMF7.120代寫、代做Python編程設計
  • 下一篇:代做COMP 412、代寫python設計編程
  • ·CRICOS編程代做、代寫Java程序設計
  • ·MDSB22代做、代寫C++,Java程序設計
  • ·代做Electric Vehicle Adoption Tools 、代寫Java程序設計
  • ·代做INFO90001、代寫c/c++,Java程序設計
  • · COMP1711代寫、代做C++,Java程序設計
  • ·GameStonk Share Trading代做、java程序設計代寫
  • ·CSIT213代做、代寫Java程序設計
  • ·CHC5223代做、java程序設計代寫
  • ·代做INFS 2042、Java程序設計代寫
  • ·代寫CPT206、Java程序設計代做
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久久久久穴| 久久精视频免费在线久久完整在线看| av成人动漫| 日韩一级二级三级| 日韩视频在线一区| 好看不卡的中文字幕| 精品成人一区二区三区| 黑人中文字幕一区二区三区| 国产一区美女| 亚洲大片在线| 亚洲欧洲一区二区在线播放| 亚洲欧洲精品天堂一级| 91久久极品少妇xxxxⅹ软件| 亚洲免费电影在线观看| 亚洲一区二区欧美| 午夜激情久久久| 久久久久五月天| 久久久久久综合网天天| 久久免费视频网| 欧美在线观看天堂一区二区三区| 久久蜜桃资源一区二区老牛| 欧美在线亚洲综合一区| 在线一区免费观看| 欧美一级二区| 另类尿喷潮videofree| 欧美激情亚洲| 国产精品色一区二区三区| 国产乱码精品一区二区三区av| 国产亚洲综合在线| 亚洲伦理网站| 一区二区三区你懂的| 亚洲欧美日韩一区二区三区在线| 欧美怡红院视频| 欧美一区三区二区在线观看| 欧美亚洲色图校园春色| 久久久久国产一区二区| 免费欧美在线| 欧美午夜不卡视频| 国产欧美日韩高清| 亚洲黄色大片| 亚洲自拍偷拍网址| 欧美成年人网站| 国产女优一区| 亚洲精品小视频| 久久国产精品72免费观看| 欧美成人一区在线| 国产伦精品一区二区| 亚洲国内高清视频| 欧美一区二区在线免费观看| 蜜臀久久久99精品久久久久久| 国产精品草莓在线免费观看| 亚洲电影免费在线| 香蕉尹人综合在线观看| 欧美日韩免费看| 在线观看视频亚洲| 欧美一区二区三区精品电影| 欧美日韩国产区| 黄色欧美日韩| 午夜国产一区| 牛牛国产精品| 黄色在线成人| 久久www成人_看片免费不卡| 国产精品vip| 一区二区三区三区在线| 欧美大片va欧美在线播放| 韩国三级在线一区| 欧美中文字幕在线| 国产精品美女在线观看| 亚洲尤物在线视频观看| 欧美日韩综合在线| 亚洲午夜激情网站| 欧美午夜精彩| 亚洲欧美福利一区二区| 国产精品毛片| 午夜亚洲福利在线老司机| 国产精品日韩精品欧美在线| 亚洲一区二区高清视频| 欧美视频一区二区三区四区| 日韩亚洲欧美中文三级| 欧美激情第三页| 最新日韩中文字幕| 欧美伦理91| 亚洲国产成人精品视频| 欧美成人自拍视频| 亚洲免费观看在线视频| 欧美区视频在线观看| 一本大道久久a久久综合婷婷| 欧美美女操人视频| 亚洲一区二区免费| 国产女人水真多18毛片18精品视频| 午夜激情一区| 激情另类综合| 欧美日韩p片| 午夜精品福利在线观看| 国产日韩精品一区二区| 久久午夜电影| 亚洲精品美女免费| 国产精品久久久久久久久婷婷| 亚洲小说欧美另类社区| 国产欧美精品在线观看| 久久久久看片| 99国产精品久久久久久久| 国产精品日韩欧美| 久久av资源网| 亚洲精品视频在线| 国产欧美日韩中文字幕在线| 狼人社综合社区| 亚洲一区二区三区中文字幕在线| 国产午夜精品久久久| 欧美激情精品| 久久激情久久| 91久久在线播放| 欧美午夜视频在线| 美腿丝袜亚洲色图| 91久久综合| 韩国av一区二区三区| 欧美视频不卡中文| 老鸭窝毛片一区二区三区| 亚洲综合首页| 99视频精品全部免费在线| 国产一区在线观看视频| 欧美日韩无遮挡| 欧美www在线| 久久精品91久久香蕉加勒比| 一区二区三区国产在线| 国产综合视频| 欧美精品一区二区三| 久久久久一区二区| 欧美一级网站| 宅男噜噜噜66一区二区| 亚洲国产美女精品久久久久∴| 国产精品伦一区| 欧美三级电影一区| 欧美成人情趣视频| 久久综合999| 久久久99爱| 久久精品首页| 久久精品伊人| 欧美一区二区在线观看| 亚洲免费中文| 亚洲综合精品四区| 亚洲色图自拍| 在线观看日韩欧美| 国产视频亚洲精品| 韩国在线视频一区| 国内久久精品| 国外成人性视频| 亚洲成人在线视频网站| 国内外成人在线视频| 国产丝袜美腿一区二区三区| 国产精品综合不卡av| 国产精品亚洲成人| 国产精品裸体一区二区三区| 国产精品va在线播放我和闺蜜| 欧美性大战久久久久久久蜜臀| 欧美日韩国产一区二区三区地区| 欧美护士18xxxxhd| 欧美激情视频一区二区三区不卡| 欧美成人a∨高清免费观看| 欧美成人日本| 欧美日韩不卡视频| 欧美日韩在线观看视频| 欧美激情影音先锋| 欧美黄色aa电影| 欧美日韩免费观看一区二区三区| 久久视频一区二区| 久久久精品国产免费观看同学| 久久久天天操| 欧美高清免费| 欧美日韩三级电影在线| 国产精品免费网站在线观看| 国产午夜亚洲精品理论片色戒| 国内精品美女av在线播放| 在线欧美一区| 99精品视频免费| 午夜一级在线看亚洲| 美女福利精品视频| 欧美调教vk| 韩国一区电影| 在线视频亚洲| 久久久久久综合网天天| 久久九九国产精品怡红院| 久久久亚洲午夜电影| 欧美特黄a级高清免费大片a级| 国产精品电影在线观看| 黄色亚洲在线| 一区二区三区日韩欧美| 久久久久久久97| 欧美日韩一区二区三区| 在线播放亚洲一区| 亚洲制服av| 免费中文字幕日韩欧美| 国产精品一区二区女厕厕| 亚洲国产精品一区二区www| 亚洲自拍高清| 欧美 日韩 国产一区二区在线视频 | 亚洲一区二区三区乱码aⅴ| 久久精品一区二区三区中文字幕| 欧美日韩精品一区二区三区| 黄色一区二区三区四区|