99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做NEKN96、代寫c/c++,Java程序設計
代做NEKN96、代寫c/c++,Java程序設計

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Homework Assignment 1
NEKN96
Guidelines
1. Upload the HWA in .zip format to Canvas before the 2nd of October, 23:59, and only
upload one HWA for each group. The .zip ffle should contain two parts:
- A report in .pdf format, which will be corrected.
- The code you used to create the output/estimates for the report. The code itself will
not be graded/corrected and is only required to conffrm your work. The easiest is to add
the whole project folder you used to the zip ffle.
1 However, if you have used online tools,
sharing a link to your work is also ffne.
2
2. The assignment should be done in groups of 3-4 people, pick groups at
Canvas → People → Groups.
3
3. Double-check that each group member’s name and ID number are included in the .pdf ffle.
4. To receive your ffnal grade on the course, a PASS is required on this HWA.
- If a revision is required, the comments must be addressed, and an updated version should
be mailed to ioannis.tzoumas@nek.lu.se. However, you are only guaranteed an additional
evaluation of the assignment in connection to an examination period.
4
You will have a lot of ffexibility in how you want to solve each part of the assignment, and all things
that are required to get a PASS are denoted in bullet points:

Beware, some things require a lot of work, but you should still only include the ffnal table or ffgure
and not all intermediary steps. If uncertain, add a sentence or two about how you reached your
conclusions, but do not add supplementary material. Only include the tables/ffgures explicitly asked
for in the bullet points.
Good Luck!
1Before uploading the code, copy-paste the project folder to a new directory and try to re-run it. Does it still work?
2Make sure the repository/link is public/working before sharing it.
3Rare exceptions can be made if required. 
4Next is the retake on December 12th, 2024.
1NEKN96
Assignment
Our goal is to put into practice the separation of population vs. sample using a linear regression
model. This hands-on approach will allow us to generate a sample from a known Population Regression
Function (PRF) and observe how breakages of the Gauss-Markov assumptions can affect our sample
estimates.
We will assume that the PRF is:
Y = α + β1X1 + β2X2 + β3X3 + ε (1)
However, to break the assumptions, we need to add:
A0: Non-linearities
A2: Heteroscedasticity
A4: Endogeneity
A7: Non-normality in a small sample
A3 autocorrelation will be covered in HWA2, time-series modelling.
Q1 - All Assumptions Fulfflled
Let’s generate a ”correct” linear regression model. Generate a PRF with the parameters:
α = 0.7, β1 = −1, β2 = 2, β3 = 0.5, ε ∼ N(0, 4), Xi
 iid∼ N(0, 1). (2)
The example code is also available in Canvas
Setup Parameters
n = 30
p = 3
beta = [-1, 2, 0.5]
alpha = 0.7
Simulate X and Y, using normally distributed errors
5
np. random . seed ( seed =96)
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
y = alpha + X @ beta + eps
Run the correctly speciffed linear regression model
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
ˆ Add a well-formatted summary table
ˆ Interpret the estimate of βˆ
2 and the R2
.
5
Important: The np.random.seed() will ensure that we all get the same result. In other words, ensure that we are
using the ”correct” seed and that we don’t generate anything else ”random” before this simulation.
2NEKN96
ˆ In a paragraph, discuss if the estimates are consistent with the population regression function.
Why, why not?
ˆ Re-run the model, increasing the sample size to n = 10000. In a paragraph, explain what happens
to the parameter estimates, and why doesn’t R2 get closer and closer to 1 as n increases?
Q2 - Endogeneity
What if we (wrongly) assume that the PRF is:
Y = α + β1X1 + β2X2 + ε (3)
Use the same seed and setup as in Q1, and now estimate both the ”correct” and the ”wrong” model:
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
result_OLS_endog = OLS ( endog =y, exog = add_constant (X[:,0:2 ])). fit ()
result_OLS_endog . summary ()
ˆ Shouldn’t this imply an omitted variable bias? Show mathematically why it won’t be a problem
in this speciffc setup (see lecture notes ”Part 2 - Linear Regression”).
Q3 - Non-Normality and Non-Linearity
Let’s simulate a sample of n = 3000, keeping the same parameters, but adding kurtosis and skewness
to the error terms:
6
n = 3000
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
eps_KU = np. sign ( eps) * eps **2
eps_SKandKU_tmp = np. where ( eps_KU > 0, eps_KU , eps_KU *2)
eps_SKandKU = eps_SKandKU_tmp - np. mean ( eps_SKandKU_tmp )
Now make the dependent variable into a non-linear relationship
y_exp = np.exp( alpha + X @ beta + eps_SKandKU )
ˆ Create three ffgures:
1. Scatterplot of y exp against x 1
2. Scatterplot of ln(y exp) against x 1
3. plt.plot(eps SKandKU)
The ffgure(s) should have a descriptive caption, and all labels and titles should be clear to the
reader.
Estimate two linear regression models:
6The manual addition of kurtosis and skewness will make E [ε] ̸= 0, so we need to remove the average from the errors
to ensure that the exogeneity assumption is still fulfflled.
3NEKN96
res_OLS_nonLinear = OLS( endog =y_exp , exog = add_constant (X)). fit ()
res_OLS_transformed = OLS ( endog =np.log ( y_exp ), exog = add_constant (X)). fit ()
ˆ Add the regression tables of the non-transformed and transformed regressions
ˆ In a paragraph, does the transformed model fft the population regression function?
Finally, re-run the simulations and transformed estimation with a small sample, n = 30
ˆ Add the regression table of the transformed small-sample estimate
ˆ Now, re-do this estimate several times
7 and observe how the parameter estimates behave. Do
the non-normal errors seem to be a problem in this spot?
Hint: Do the parameters seem centered around the population values? Do we reject H0 : βi = 0?
ˆ In a paragraph, discuss why assuming a non-normal distribution makes it hard to ffnd the
distributional form under a TRUE null hypothesis, H0 ⇒ Distribution?
Hint: Why is the central limit theorem key for most inferences?
Q4 - Heteroscedasticity
Suggest a way to create heteroscedasticity in the population regression function.
8
ˆ Write down the updated population regression function in mathematical notation
ˆ Estimate the regression function assuming homoscedasticity (as usual)
ˆ Adjust the standard errors using a Heteroscedastic Autocorrelated Consistent (HAC) estimator
(clearly state which HAC estimator you use)
ˆ Add the tables of both the unadjusted and adjusted estimates
ˆ In a paragraph, discuss if the HAC adjustment to the standard errors makes sense given the
way you created the heteroscedasticity. Did the HAC adjustment seem to ffx the problem?
Hint: Bias? Efffcient?
7Using a random seed for each estimate.
8Tip: Double-check by simulating the model and plotting the residuals against one of the regressors. Does it look
heteroscedastic?


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:ITMF7.120代寫、代做Python編程設計
  • 下一篇:代做COMP 412、代寫python設計編程
  • ·CRICOS編程代做、代寫Java程序設計
  • ·MDSB22代做、代寫C++,Java程序設計
  • ·代做Electric Vehicle Adoption Tools 、代寫Java程序設計
  • ·代做INFO90001、代寫c/c++,Java程序設計
  • · COMP1711代寫、代做C++,Java程序設計
  • ·GameStonk Share Trading代做、java程序設計代寫
  • ·CSIT213代做、代寫Java程序設計
  • ·CHC5223代做、java程序設計代寫
  • ·代做INFS 2042、Java程序設計代寫
  • ·代寫CPT206、Java程序設計代做
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品88av| 婷婷亚洲久悠悠色悠在线播放| 在线观看欧美黄色| 成人午夜在线视频| 久久99国产精品久久99果冻传媒| 亚洲一区二区四区蜜桃| 亚洲狠狠丁香婷婷综合久久久| 国产精品美日韩| 国产农村妇女精品| 国产精品国产三级国产普通话蜜臀| 久久免费国产精品| 国产网红主播福利一区二区| 国产午夜精品美女毛片视频| 国产三级三级三级精品8ⅰ区| 久久午夜老司机| 国产色91在线| 日韩一区有码在线| 亚洲一区二区三区四区在线| 亚洲成人激情综合网| 天天操天天干天天综合网| 丝袜美腿一区二区三区| 久久精品国产免费| 国产精品一区不卡| 99综合电影在线视频| 91黄色免费看| 91精品国产一区二区人妖| 精品国产一区二区三区不卡| 国产亚洲精品aa| 亚洲男人的天堂网| 日产精品久久久久久久性色| 国产精品亚洲成人| 色综合夜色一区| 在线电影欧美成精品| 久久亚洲捆绑美女| 国产精品区一区二区三区| 亚洲国产精品一区二区www在线| 日韩影视精彩在线| 国产美女一区二区| 欧美伊人久久久久久久久影院| 日韩一区二区三区精品视频| 国产三级精品视频| 日韩不卡在线观看日韩不卡视频| 国产宾馆实践打屁股91| 欧美亚洲一区三区| 久久久久久9999| 午夜精品福利在线| 成人污视频在线观看| 欧美一区二区三区系列电影| 国产精品久久看| 久久精品久久精品| 欧美丝袜丝交足nylons| 国产亚洲1区2区3区| 青青草伊人久久| 一本久道久久综合中文字幕| 久久日一线二线三线suv| 亚洲自拍都市欧美小说| 成人午夜视频免费看| 制服丝袜亚洲色图| 亚洲免费在线看| 成人免费毛片app| 2023国产精华国产精品| 奇米影视在线99精品| 91视频观看免费| 国产精品色一区二区三区| 免费人成精品欧美精品| 91福利社在线观看| 自拍偷拍国产亚洲| 成人晚上爱看视频| 久久人人超碰精品| 极品美女销魂一区二区三区| 欧美一区午夜精品| 婷婷国产v国产偷v亚洲高清| 欧美影视一区二区三区| 亚洲卡通动漫在线| 91麻豆成人久久精品二区三区| 国产精品久久久久婷婷| 国产精品一区二区黑丝| 久久日一线二线三线suv| 国产一本一道久久香蕉| 国产欧美日韩在线| 国产一区二区看久久| 久久亚区不卡日本| 国产精品主播直播| 日本一区二区三级电影在线观看| 懂色av中文字幕一区二区三区| 国产欧美日韩在线观看| 99久久精品久久久久久清纯| 亚洲视频在线一区| 色诱视频网站一区| 一区二区三区四区亚洲| 欧美日韩国产首页在线观看| 亚洲mv在线观看| 3d动漫精品啪啪| 国内不卡的二区三区中文字幕| 久久精品欧美日韩| 成人激情开心网| 一区二区在线观看视频 | 国产高清在线精品| 久久精品一区二区三区av| 成人污污视频在线观看| 亚洲日本一区二区| 91精品婷婷国产综合久久竹菊| 久热成人在线视频| 国产精品水嫩水嫩| 欧美在线你懂得| 久久超级碰视频| 国产精品午夜电影| 欧美伊人久久久久久午夜久久久久| 毛片不卡一区二区| 国产蜜臀97一区二区三区| 91成人网在线| 国模一区二区三区白浆| 亚洲一区二区偷拍精品| 亚洲精品一区二区三区福利| 色综合天天天天做夜夜夜夜做| 日韩成人一区二区| 亚洲另类春色校园小说| 久久久综合精品| 欧美午夜片在线看| 国产91丝袜在线播放九色| 亚洲成人av中文| 国产日本欧美一区二区| 欧美日韩国产免费一区二区| 成人视屏免费看| 日韩中文字幕1| 亚洲精品国产成人久久av盗摄 | 韩日精品视频一区| 亚洲午夜影视影院在线观看| 国产欧美日韩中文久久| 51精品久久久久久久蜜臀| 色婷婷久久综合| 国产精品资源在线看| 久99久精品视频免费观看| 亚洲精品国久久99热| 久久丝袜美腿综合| 日韩三级免费观看| 欧美日本一区二区在线观看| 成人网男人的天堂| 国产毛片精品国产一区二区三区| 日韩二区在线观看| 亚洲蜜臀av乱码久久精品 | 欧美福利一区二区| 色欧美片视频在线观看| 成人av电影在线网| 国产一区二区三区免费观看| 日韩专区欧美专区| 奇米在线7777在线精品| 日本欧美在线观看| 亚洲国产成人porn| 樱桃视频在线观看一区| **欧美大码日韩| 最好看的中文字幕久久| 国产精品天天看| 国产女人18毛片水真多成人如厕 | 欧洲一区在线电影| 在线观看视频一区二区欧美日韩| 成人激情黄色小说| 91在线视频免费观看| 99精品热视频| 色综合激情五月| 欧美系列一区二区| 欧美男人的天堂一二区| 欧美另类videos死尸| 欧美一区二区三区四区视频 | 亚洲啪啪综合av一区二区三区| 亚洲男人的天堂在线aⅴ视频| 亚洲精品中文在线影院| 亚洲一区二区在线免费观看视频 | 国产乱子伦视频一区二区三区| 福利一区福利二区| 91视频国产观看| 欧美男男青年gay1069videost| 7777精品久久久大香线蕉| 日韩欧美成人一区二区| 中文字幕国产一区| 亚洲精品成人悠悠色影视| 日韩av成人高清| 成人自拍视频在线观看| 在线观看不卡一区| 日韩一级大片在线| 中文字幕一区二区日韩精品绯色| 亚洲精品成a人| 激情综合色播五月| 色综合久久综合中文综合网| 91精品国产综合久久精品性色| 精品理论电影在线观看 | 老色鬼精品视频在线观看播放| 不卡av在线网| 884aa四虎影成人精品一区| 久久久久久久综合色一本| 中文字幕中文字幕在线一区| 亚洲精品美国一| 偷拍日韩校园综合在线| 日本aⅴ精品一区二区三区 | 久久久久久久精| 久久色成人在线| 亚洲欧美怡红院| 视频一区二区三区中文字幕| 国产精品18久久久久久vr | 国产精品沙发午睡系列990531|