合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫CS444 Linear classifiers

        時間:2024-02-29  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


        Assignment 1: Linear classifiers

        Due date: Thursday, February 15, 11:59:59 PM

         

        In this assignment you will implement simple linear classifiers and run them on two different datasets:

        1. Rice dataset: a simple categorical binary classification dataset. Please note that the

        labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

        2. Fashion-MNIST: a multi-class image classification dataset

        The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

        Download the starting code here.

        You will implement the following classifiers (in their respective files):

        1. Logistic regression (logistic.py)

        2. Perceptron (perceptr on.py)

        3. SVM (svm.py)

        4. Softmax (softmax.py)

        For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

        The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

        Setup instructions are below. The format of this assignment is inspired by the Stanford

        CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

        None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

        Environment Setup (Local)

        If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

        We suggest that you use Anaconda to manage Python package dependencies

        (https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

        Data Setup (Local)

        Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

        $ cd assignment1/fashion-mnist/

        $ sh get_data.sh or $bash get_data.sh

        The Rice dataset is small enough that we've included it in the zip file.

        Data Setup (For Colaboratory)

        If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

        Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

        You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

        condensed all the important commands you need to run into an IPython notebook.

        IPython

        The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

        Submission Instructions

        Submission of this assignment will involve three steps:

        1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

        2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

          Perceptron

          SVM

          Softmax

        The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

        3. You must upload three files on Canvas:

        1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

        2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

        3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

        Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

        Please refer to course policies on academic honesty, collaboration, late submission, etc.
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機打開當前頁
      1. 上一篇:莆田鞋在哪買:介紹十個最新購買渠道
      2. 下一篇:代寫5614. C++ PROGRAMMING
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 北岛玲在线一区二区| 国产精品免费视频一区| 日韩精品国产一区| 精品一区二区久久久久久久网精| 亚洲国产精品一区二区九九 | 精品一区二区三区3d动漫| 一区二区三区免费在线视频 | 精品国产不卡一区二区三区| 日韩一区二区视频| 国产高清在线精品一区二区三区| 亚洲乱色熟女一区二区三区蜜臀 | 无码日韩精品一区二区人妻| 国产乱人伦精品一区二区在线观看| 日韩人妻一区二区三区免费 | 日韩一区二区在线播放| 岛国精品一区免费视频在线观看| 无码人妻一区二区三区在线水卜樱| 亚洲AV无码国产一区二区三区| 国模私拍福利一区二区| 亚洲电影唐人社一区二区| 亚洲Av无码一区二区二三区| 91在线一区二区| AA区一区二区三无码精片| 亚洲视频一区在线播放| 在线中文字幕一区| 中文字幕亚洲综合精品一区| 久久久国产精品亚洲一区| 少妇特黄A一区二区三区| 精品国产乱码一区二区三区| 精品少妇ay一区二区三区| 亚洲视频一区在线观看| 亚洲日韩精品国产一区二区三区| 亚洲AV无码一区二区三区牲色 | 精品国产一区二区麻豆| 国产一区在线电影| 相泽亚洲一区中文字幕| 一区二区三区在线|欧| 亚洲熟女综合一区二区三区| 正在播放国产一区| 视频在线观看一区二区| 久久精品一区二区影院|