99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫5614. C++ PROGRAMMING

時間:2024-02-29  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
代寫 5614. C++ Programming-留學生作業幫 (daixie7.com)


請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫CS444 Linear classifiers
  • 下一篇:莆田鞋官方正品入口,這十個官方入口必須收藏
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日韩午夜在线影院| 成人黄色软件下载| 亚洲精品视频免费看| 久久久国产精品麻豆| 日韩欧美中文字幕公布| 91精品国产91热久久久做人人| 在线观看一区日韩| 一本大道综合伊人精品热热| 99热精品一区二区| 91日韩精品一区| 色综合色综合色综合色综合色综合| 成人黄色一级视频| 91视视频在线直接观看在线看网页在线看| 国产91丝袜在线观看| 国产伦精品一区二区三区视频青涩 | 激情综合五月天| 久久99精品国产.久久久久| 免费高清在线一区| 国产在线看一区| 国产成人精品免费在线| 91在线视频播放地址| 欧美午夜精品理论片a级按摩| 欧美日韩国产不卡| 精品欧美黑人一区二区三区| 精品剧情v国产在线观看在线| 久久久久88色偷偷免费| 中文字幕在线不卡一区| 舔着乳尖日韩一区| 国产精品一二二区| 色综合天天综合网天天狠天天| 在线免费观看日本欧美| 精品成人免费观看| 亚洲日本va午夜在线电影| 三级影片在线观看欧美日韩一区二区| 美国三级日本三级久久99| 国产精品影视网| 欧美亚一区二区| 久久久精品一品道一区| 一区二区视频在线| 久久国内精品视频| www.视频一区| 日韩一区二区精品| 国产精品成人一区二区三区夜夜夜| 亚洲一区二区视频| 成人一二三区视频| 欧美日韩黄色影视| 中文字幕日韩av资源站| 九色综合国产一区二区三区| 色综合久久88色综合天天免费| 欧美成人伊人久久综合网| 一片黄亚洲嫩模| 国产成人99久久亚洲综合精品| 欧美色老头old∨ideo| 国产欧美精品一区| 蜜臀久久99精品久久久久宅男| 色综合色狠狠天天综合色| 久久久久国产精品人| 日本不卡中文字幕| 欧美午夜精品免费| 亚洲精品大片www| 国产a区久久久| 久久久噜噜噜久久人人看| 天天综合网天天综合色| 色狠狠av一区二区三区| 国产日韩欧美精品综合| 精品一区二区三区影院在线午夜| 欧美日韩中字一区| 亚洲一级不卡视频| 在线观看视频一区| 成人欧美一区二区三区白人| 国产精选一区二区三区| 久久―日本道色综合久久| 日本美女一区二区三区视频| 7777精品伊人久久久大香线蕉 | 日韩1区2区日韩1区2区| 91精品国产全国免费观看| 亚洲成人手机在线| 欧美日韩美少妇| 亚洲线精品一区二区三区八戒| 日本韩国一区二区三区| 亚洲美女视频在线观看| 在线欧美小视频| 亚洲一区日韩精品中文字幕| 在线观看日韩电影| 亚洲国产你懂的| 777xxx欧美| 九色综合狠狠综合久久| 国产午夜一区二区三区| 成人福利视频网站| 1区2区3区精品视频| 色欲综合视频天天天| 午夜精品在线看| 日韩精品中文字幕在线不卡尤物 | 精品精品欲导航| 粉嫩aⅴ一区二区三区四区| 中文在线一区二区| 在线亚洲精品福利网址导航| 亚洲制服丝袜av| 91精品久久久久久蜜臀| 国产91高潮流白浆在线麻豆| 亚洲欧美另类综合偷拍| 在线综合+亚洲+欧美中文字幕| 精品一区二区三区香蕉蜜桃| 国产亚洲精品福利| 欧美日韩激情一区| 国产不卡视频一区二区三区| 一区二区三区成人| 欧美成人国产一区二区| 91免费国产在线| 免费视频最近日韩| 亚洲欧美成人一区二区三区| 欧美日韩亚洲国产综合| 国产九九视频一区二区三区| 一区二区在线观看av| 久久久国产精品午夜一区ai换脸| 色94色欧美sute亚洲线路一ni| 久久精品国产99国产精品| 亚洲视频小说图片| 久久久电影一区二区三区| 欧美日韩一区三区| 成人激情免费电影网址| 日本美女一区二区三区| 亚洲美女在线一区| 亚洲国产精品成人综合色在线婷婷 | 久久久久久久久久久黄色| 欧美午夜片在线观看| 成人一区二区三区中文字幕| 天堂va蜜桃一区二区三区漫画版| 中文天堂在线一区| 日韩精品一区二区三区四区| 在线免费观看成人短视频| 不卡的av电影| 成人一区二区三区| 韩国av一区二区| 日韩电影在线观看网站| 亚洲第一主播视频| 亚洲欧美日韩综合aⅴ视频| 国产网站一区二区| 久久免费偷拍视频| 日韩午夜电影av| 欧美一二三在线| 日韩一本二本av| 欧美一区二区视频在线观看2020 | 欧美一区二区网站| 欧美老女人在线| 欧美探花视频资源| 99麻豆久久久国产精品免费优播| 国产福利精品一区二区| 久久99热国产| 久久99精品国产麻豆不卡| 日韩国产在线观看| 亚洲va韩国va欧美va| 亚洲图片欧美色图| 日韩精品三区四区| 日韩高清不卡在线| 另类小说综合欧美亚洲| 国产在线视频一区二区三区| 麻豆成人免费电影| 青青草国产成人99久久| 日本美女一区二区三区| 精品一区二区在线免费观看| 国产原创一区二区三区| 国产传媒日韩欧美成人| 成人精品gif动图一区| 91麻豆免费观看| 91麻豆精品国产91久久久更新时间 | 91污在线观看| 欧美性视频一区二区三区| 91精品国产色综合久久不卡蜜臀| 91精品国产黑色紧身裤美女| 亚洲精品一区二区三区精华液 | 亚洲观看高清完整版在线观看 | 国产亚洲污的网站| 1000部国产精品成人观看| 一区二区三区美女视频| 天堂va蜜桃一区二区三区漫画版| 麻豆成人久久精品二区三区红| 国产毛片一区二区| 91免费国产在线| 欧美zozozo| 亚洲欧美电影院| 久久草av在线| 99国产精品国产精品毛片| 欧美顶级少妇做爰| 亚洲国产成人在线| 偷拍日韩校园综合在线| 国产成人自拍网| 欧美日韩一区在线| 欧美激情艳妇裸体舞| 亚洲成人激情自拍| 国产91高潮流白浆在线麻豆| 欧美日韩精品系列| 国产精品家庭影院| 青椒成人免费视频| 91精品办公室少妇高潮对白| 欧美xxxxxxxx| 日韩一区精品视频| 91国偷自产一区二区三区观看| 久久久久久久久免费| 欧美bbbbb|