99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

MATH4063代做、代寫C++編程設計

時間:2023-11-17  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



1 MATH**3
The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
AUTUMN SEMESTER 2022-2023
MATH**3 - SCIENTIFIC COMPUTING AND C++
Coursework 1 - Released 30th October 2023, 4pm
Your work should be submitted electronically via the MATH**3 Moodle page by 12noon on Monday 20th
November (unless you have arranged an extension). Since this work is assessed, your submission must be
entirely your own work (see the University’s policy on Academic Misconduct). Submissions up to five working
days late will be marked, but subject to a penalty of 5% of the maximum mark per working day.
The marks for each question are given by means of a figure enclosed by square brackets, eg [20]. There are
a total of 100 marks available for the coursework and it contributes 45% to the module. The marking rubric
available on Moodle will be applied to each full question to further break down this mark.
You are free to name the functions you write as you wish, but bear in mind these names should be meaningful.
Functions should be grouped together in .cpp files and accessed in other files using correspondingly named
.hpp files.
All calculations should be done in double precision.
A single zip file containing your full solution should be submitted on Moodle. This zip file should contain three
folders called main, source and include, with the following files in them:
main:
• q1d.cpp
• q2c.cpp
• q3c.cpp
• q4b.cpp
source:
• vector.cpp
• dense_matrix.cpp
• csr_matrix.cpp
• linear_algebra.cpp
• finite_volume.cpp
include:
• vector.hpp
• dense_matrix.hpp
• csr_matrix.hpp
• linear_algebra.hpp
• finite_volume.hpp
Prior to starting the coursework, please download the CW1_code.zip from Moodle and extract the files. More
information about the contents of the files included in this zip file is given in the questions below.
Hint: When using a C++ struct with header files, the whole struct needs to be defined fully in the header file,
and the header file included in the corresponding .cpp file. Include guards should also be used.
MATH**3 Turn Over
2 MATH**3
In this coursework you will build a 2D finite volume solver for the following PDE boundary value problem
−𝛥w**6; + ∇ ⋅ (bw**6;) = 𝑓 (w**9;, 𝑦) ∈ 𝛺, (1)
w**6; = 𝑔, (w**9;, 𝑦) ∈ 𝜕𝛺, (2)
where 𝑓 ∶ 𝛺 → **7;, 𝑔 ∶ 𝜕𝛺 → **7; and b ∶ 𝛺 → **7;2
.
In order to solve this problem, you will first define a sparse matrix structure, then write functions to apply
the GMRES linear algebra solver and finally build and solve the linear system arising from the finite volume
approximation of (1)-(2).
1. Matrices arising from the discretisation of partial differential equations using, for example, finite volume
methods, are generally sparse in the sense that they have many more zero entries than nonzero ones.
We would like to avoid storing the zero entries and only store the nonzero ones.
A commonly employed sparse matrix storage format is the Compressed Sparse Row (CSR) format. Here,
the nonzero entries of an 𝑛 × 𝑛 matrix are stored in a vector matrix_entries, the vector column_no gives
the column position of the corresponding entries in matrix_entries, while the vector row_start of length
𝑛+1 is the list of indices which indicates where each row starts in matrix_entries. For example, consider
the following:
𝐴 =




8 0 0 2
0 3 1 0
0 0 4 0
6 0 0 7





matrix_entries = (8 2 3 1 4 6 7)
column_no = (0 3 1 2 2 0 3)
row_start = (0 2 4 5 7)
Note, in the above, C++ indexing has been assumed, i.e, indices begin at 0.
(a) In csr_matrix.hpp, define a C++ struct called csr_matrix to store a matrix in CSR format. In
addition to matrix_entries, column_no and row_start, you should store the number of rows of the
matrix explicitly.
(b) In csr_matrix.cpp, write a C++ function that will set up the matrix 𝐴 from above in CSR format.
Remember, if you are using dynamically allocated memory, then you should also have corresponding
functions that will deallocate the memory you have set up.
(c) In csr_matrix.cpp, write a C++ function that takes as input a matrix 𝐴 stored in CSR format and a
vector x and computes the product 𝐴x. The prototype for your function should be:
void MultiplyMatrixVector ( csr_matrix & matrix ,double* vector ,
double* productVector )
Hence, the input vector and the output productVector should be pointers to dynamically allocated
arrays. In particular, it should be assumed that productVector has been preallocated to the correct
size already.
(d) By setting a vector x = (4, −1, 3, 6)⊤, write a test program in q1d.cpp to compute and print to the
screen the product 𝐴x, where 𝐴 is the matrix given above.
[20 marks]
MATH**3
3 MATH**3
2. Suppose we wish to find x ∈ **7;𝑛
such that
𝐴x = b, (3)
where 𝐴 is an 𝑛 × 𝑛 matrix and b ∈ **7;𝑛
.
One algorithm for solving this problem is the (restarted) Generalised Minimal RESidual (GMRES) algorithm.
The method is too complicated to explain here, but works to quickly find approximations x𝑘 = x0 + y𝑘
where y𝑘 ∈ 𝒦𝑘 ∶= Span{𝐴q0
, 𝐴2q0 … 𝐴𝑘q0
} for 𝑘 = 1, 2, …. y𝑘 is chosen to minimise the residual
‖b − 𝐴x𝑘‖2
.
Here x0
is some initial guess vector and q0
is the normed initial residual
q0 =
b − 𝐴x0
‖b − 𝐴x0‖2
.
𝒦𝑘 is called a Krylov subspace of 𝐴.
The algorithm stops when ‖b − 𝐴x𝑘‖2 < tol for some termination tolerance tol. As the method becomes
very memory inefficient when 𝑘 is large, the method is restarted every so often and x𝑘 reset to be x0
.
An incomplete GMRES algorithm function PerformGMRESRestarted() has been written in
linear_algebra.cpp.
A key component of the GMRES algorithm is the Arnoldi iteration that seeks to find an orthonormal basis
of 𝒦𝑘. At the 𝑘th step of the iteration, the Arnoldi method constructs the following matrix decomposition
of 𝐴:
𝐴𝑄𝑘 = 𝑄𝑘+1𝐻̃
𝑘,
where the columns of 𝑄𝑘 (𝑄𝑘+1) contain the orthonormal basis of 𝒦𝑘 (𝒦𝑘+1, resp.) and 𝐻̃
𝑘 is a (𝑘+1)× 𝑘
upper Hessenberg matrix. That is, a matrix that is nearly upper triangular but has non-zero components
on the first subdiagonal.
The 𝑘th step of the Arnoldi algorithm is:
Algorithm 1 One step of the Arnoldi Iteration.
Require: 𝑘 > 0, 𝐴, 𝑄𝑘:
1: Let q𝑖 be the 𝑖th column of 𝑄𝑘.
2: Let h = {ℎ𝑖
}
𝑘+1
𝑖=1 be a vector of length 𝑘 + 1.
3: Compute q𝑘+1 = 𝐴q𝑘
4: for 𝑖 = 1, … , 𝑘 do
5: ℎ𝑖 = q𝑘+1 ⋅ q𝑖
.
6: q𝑘+1 = q𝑘+1 − ℎ𝑖q𝑖
.
7: end for
8: ℎ𝑘+1 = ‖q𝑘+1‖2
.
9: q𝑘+1 = q𝑘+1/ℎ𝑘.
10: 𝑄𝑘+1 = [𝑄𝑘, q𝑘+1].
11: return 𝑄𝑘+1 and h.
(a) In linear_algebra.cpp, write a C++ function which implements one step of the Arnoldi iteration
method defined above.
The function should have the following prototype
void PerformArnoldiIteration ( csr_matrix & matrix ,
dense_matrix & krylov_matrix , int k, double* hessenberg )
MATH**3 Turn Over
4 MATH**3
Here, matrix is 𝐴, k is the step of the iteration to perform, krylov_matrix is the matrix containing
the orthonormal basis, where each row is a basis vector. Upon entry, krylov_matrix should have 𝑘
rows and upon exit it should contain 𝑘 + 1 rows, with the new basis vector in the last row.
Finally, upon exit, hessenberg should contain h, which is the final column of 𝐻̃
𝑘. You may assume that
hessenberg has been preallocated to be of length 𝑘+1 before the call to PerformArnoldiIteration.
Your function should make use, where possible, of prewritten functions defined in dense_matrix.cpp
and vector.cpp. Your code should also make use of the matrix multiplication function from Q1.
Once you have written PerformArnoldiIteration() the GMRES function should function as intended.
Note: Storage of the basis functions in the rows of krylov_matrix, rather than in the columns,
improves efficiency of the code.
(b) In csr_matrix.cpp, write a C++ function that will read from a file a matrix already stored in CSR
format and a vector. You may assume the file structures are as in matrix1.dat and vector1.dat on
Moodle and you may use these data files to test your function.
(c) Write a test program in file q2c.cpp that will read in the matrix 𝐴 from matrix2.dat and the vector
x from vector2.dat, compute b = 𝐴x, then use PerformGMRESRestarted() with the default input
arguments to find an approximation x̂to x. At the end of the calculation, print to the screen the error
‖x − ̂ x‖2
.
[30 marks]
3. The file mesh.hpp contains a struct that defines a mesh data structure mesh for a general mesh comprising
axis-aligned rectangular cells. In particular, each cell in the mesh has an additional struct called
cell_information that contains, among other things, information about the cell neighbours. Familiarise
yourself with these data structures by looking in mesh.hpp.
mesh.cpp contains two functions that will generate meshes, they are:
• ConstructRectangularMesh() - this constructs a mesh on the rectangular domain 𝛺𝑅 = [𝑎, 𝑏] ×
[𝑐, 𝑑].
• ConstructLShapedMesh() - this constructs a mesh on the L-shaped domain 𝛺𝐿 = 𝛺𝑅\𝛺𝐶, where
𝛺𝐶 = [(𝑎 + 𝑏)/2, 𝑏] × [(𝑐 + 𝑑)/2, 𝑑].
(a) In finite_volume.cpp, write a C++ function that will create the storage for a matrix 𝐴 in CSR format
and a RHS vector F required for a cell-centred finite volume method for solving (1)-(2). You should
follow the procedure outlined in the Unit 6 lecture notes. As one of the inputs, your function should
take in a variable of type mesh.
(b) In csr_matrix.cpp, write a C++ function that will output to the screen a matrix stored in CSR format
in the same style as in matrix1.dat.
(c) In Q3c.cpp, write a program that will ask the user to supply the number of cells in each coordinate
direction of a rectangular mesh, sets up the mesh using ConstructRectangularMesh() then calls the
function from part (a) to set up the corresponding matrix and finally prints it to the screen using the
function from part (b).
[30 marks]
MATH**3
5 MATH**3
4. (a) In finite_volume.cpp, write a function that takes in a mesh, uses the function from Q3(a) to construct
𝐴 and F, then populates it with the correct entries to solve problem (1)-(2) using the cell-centred finite
volume method, as outlined in the Unit 6 notes. The function should also take as input the functions
𝑓(w**9;, 𝑦), b(w**9;, 𝑦) and the Dirichlet boundary function 𝑔(w**9;, 𝑦).
(b) In Q4b.cpp, write a main program to ask the user to select from the following problems and supply
the number of cells in each coordinate direction.
1. • Rectangular Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 1;
• 𝑔(w**9;, 𝑦) = 0;
• b = 0.
2. • L-shaped Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 8𝜋2
cos(2𝜋w**9;) cos(2𝜋𝑦);
• 𝑔(w**9;, 𝑦) = cos(2𝜋w**9;) cos(2𝜋𝑦);
• b = 0.
3. • Rectangular Mesh - 𝑎 = −1, 𝑏 = 1, 𝑐 = −1 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 1;
• 𝑔(w**9;, 𝑦) = 0;
• b = (10, 10)⊤.
4. • L-Shaped Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 0;

𝑔(w**9;, 𝑦) = {
1, w**9; = 0, 0.25 < 𝑦 < 0.75,
0, otherwise;
• b = (
50𝑦
√w**9;2+𝑦2
,
−50w**9;
√w**9;2+𝑦2
)

.
The code should then set up the linear system arising from the finite volume discretisation and solve
the system
𝐴uℎ = F
using PerformGMRESRestarted().
Finally, print to the screen the maximum value of uℎ.
Hint: Once you have computed uℎ you can output it to together with the mesh to a file using
OutputSolution() in mesh.cpp. plot_solution.py can then be used to plot the solution in Python.
Note, if you are unable to get the iterative solver from Q2 working, then you may create the finite volume
matrix 𝐴 as if it were a dense matrix (i.e store all the zero entries) and use the function
PerformGaussianElimination() from dense_matrix.cpp to solve the system of equations. This will incur
a small penalty. Note, an illustration of the use of PerformGaussianElimination() can be found in the
main program inside gaussian_elimination_test.cpp.
[20 marks]
MATH**3 End

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:COMP9021代做、代寫Python程序語言
  • 下一篇:代寫CSE 30程序、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲精品在线观| 欧美四级电影网站| 免费看成人av| 一区二区精品| **性色生活片久久毛片| 国产精品视频xxx| 欧美激情中文不卡| 久久精品一本| 午夜精品www| 亚洲图片欧美一区| 欧美午夜电影一区| 欧美成人午夜视频| 久久久免费精品| 性做久久久久久免费观看欧美| 欧美性猛交一区二区三区精品| 久久嫩草精品久久久精品一| 亚洲女同性videos| 狠狠狠色丁香婷婷综合久久五月| 亚欧成人在线| 亚洲欧美久久| 亚洲图片欧洲图片av| 99成人精品| 亚洲精品综合久久中文字幕| 亚洲人成啪啪网站| 亚洲国产电影| 亚洲黄色av| 亚洲精品综合在线| 亚洲精品看片| 在线视频一区观看| 亚洲无人区一区| 亚洲免费综合| 欧美中日韩免费视频| 久久精品夜色噜噜亚洲a∨ | 国产精品福利av| 欧美性视频网站| 国产精品久久久久久超碰| 国产精品高清在线观看| 国产欧美大片| 欧美成人一品| 欧美精品成人一区二区在线观看| 欧美大成色www永久网站婷| 欧美粗暴jizz性欧美20| 久久综合中文| 亚洲欧美在线aaa| 欧美一区免费视频| 一本色道久久综合| 亚洲午夜一区二区三区| 午夜精品99久久免费| 久久国产高清| 亚洲免费网站| 久久久噜噜噜| 欧美日韩午夜视频在线观看| 免费成人性网站| 欧美在线观看你懂的| 久久亚洲一区二区| 欧美午夜不卡| 亚洲大胆视频| 亚洲在线1234| 欧美激情va永久在线播放| 国产精品视区| 亚洲人成网站精品片在线观看 | 国产精品一区二区久久| 黄色亚洲在线| 韩国久久久久| 亚洲性夜色噜噜噜7777| 亚洲精品免费一二三区| 欧美精品久久一区二区| 欧美三级第一页| 在线观看欧美日韩国产| 亚洲一区二区三区免费观看 | 欧美国产日韩一区二区在线观看| 国产精品大片| 亚洲国产精品成人va在线观看| 亚洲综合视频在线| 欧美日韩情趣电影| 亚洲国产另类精品专区 | 狠狠色丁香久久婷婷综合丁香| 亚洲另类自拍| 欧美阿v一级看视频| 国产欧美一区二区视频| 中文欧美字幕免费| 欧美精选一区| 亚洲精品国精品久久99热| 久久精品国产亚洲a| 国产精品色午夜在线观看| 中文国产成人精品| 欧美激情五月| 最新国产の精品合集bt伙计| 久久一区欧美| 欧美乱妇高清无乱码| 伊人成年综合电影网| 久久av二区| 国产综合久久| 久久香蕉国产线看观看网| 国产主播一区二区| 久久久久久尹人网香蕉| 国产综合第一页| 久久综合五月天婷婷伊人| 国产在线欧美日韩| 久久人人97超碰国产公开结果| 国产亚洲精品福利| 欧美一区二区三区在线观看 | 国语自产精品视频在线看一大j8 | 欧美在线综合| 国产中文一区| 女同一区二区| 亚洲免费观看| 国产精品久久久久久久久久久久| 亚洲欧美日本国产专区一区| 国产欧美视频一区二区| 久久久久久久一区| 亚洲日本成人| 国产精品久久精品日日| 性久久久久久| 在线免费观看日韩欧美| 欧美精品久久一区二区| 亚洲欧美美女| 影音先锋中文字幕一区| 欧美乱大交xxxxx| 午夜在线一区二区| 亚洲国产婷婷香蕉久久久久久99| 欧美日韩亚洲网| 久久黄色网页| 艳女tv在线观看国产一区| 国产农村妇女精品| 欧美顶级少妇做爰| 极品av少妇一区二区| 欧美成人蜜桃| 亚洲一区中文字幕在线观看| 欧美精品一区二| 午夜精品美女自拍福到在线| 亚洲福利国产| 国产伦精品免费视频| 欧美日韩高清在线| 久久久久久9999| 亚洲一区二区欧美| 欧美亚韩一区| 欧美成人高清| 久久久久久久一区| 午夜精品久久久久久久蜜桃app| 亚洲国产精品一区二区尤物区| 国产精品毛片大码女人| 欧美大片在线看| 久久精品最新地址| 亚洲欧美另类久久久精品2019| 亚洲高清久久网| 国产一区在线观看视频| 国产精品久久久免费| 欧美精品自拍| 欧美成人有码| 女人天堂亚洲aⅴ在线观看| 久久精品视频在线| 性8sex亚洲区入口| 亚洲午夜激情在线| 亚洲美女精品一区| 一本久道久久久| 日韩一级黄色片| 亚洲人屁股眼子交8| 亚洲电影免费观看高清完整版在线观看 | 亚洲人人精品| 亚洲国产日韩一区二区| 在线国产精品播放| 影音先锋久久久| 精品va天堂亚洲国产| 国产欧美在线看| 美脚丝袜一区二区三区在线观看 | 免费一级欧美在线大片| 久久久久久久尹人综合网亚洲| 亚洲在线第一页| 欧美亚洲综合在线| 久久激情五月激情| 久久综合激情| 男人的天堂亚洲在线| 欧美国产在线视频| 欧美日韩三级在线| 久久国产精品高清| 久久久久久久久岛国免费| 久久精品国产一区二区三区| 久久综合给合久久狠狠狠97色69| 久久久不卡网国产精品一区| 老鸭窝亚洲一区二区三区| 亚洲一区二区在线观看视频| 亚洲一区二区三区在线看| 亚洲欧美日韩一区| 久久久青草婷婷精品综合日韩| 麻豆av福利av久久av| 欧美日韩精品伦理作品在线免费观看 | 黄色精品一二区| 亚洲黄页视频免费观看| 亚洲性图久久| 久久久久国色av免费看影院 | 99精品欧美一区二区三区综合在线| 国产欧美视频在线观看| 黄色欧美成人| 日韩午夜三级在线| 欧美一二区视频| 欧美电影电视剧在线观看| 国产精品亚发布| 最近中文字幕mv在线一区二区三区四区| 一区二区三区.www|