99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MATH4063代做、代寫C++編程設計

時間:2023-11-17  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



1 MATH**3
The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
AUTUMN SEMESTER 2022-2023
MATH**3 - SCIENTIFIC COMPUTING AND C++
Coursework 1 - Released 30th October 2023, 4pm
Your work should be submitted electronically via the MATH**3 Moodle page by 12noon on Monday 20th
November (unless you have arranged an extension). Since this work is assessed, your submission must be
entirely your own work (see the University’s policy on Academic Misconduct). Submissions up to five working
days late will be marked, but subject to a penalty of 5% of the maximum mark per working day.
The marks for each question are given by means of a figure enclosed by square brackets, eg [20]. There are
a total of 100 marks available for the coursework and it contributes 45% to the module. The marking rubric
available on Moodle will be applied to each full question to further break down this mark.
You are free to name the functions you write as you wish, but bear in mind these names should be meaningful.
Functions should be grouped together in .cpp files and accessed in other files using correspondingly named
.hpp files.
All calculations should be done in double precision.
A single zip file containing your full solution should be submitted on Moodle. This zip file should contain three
folders called main, source and include, with the following files in them:
main:
• q1d.cpp
• q2c.cpp
• q3c.cpp
• q4b.cpp
source:
• vector.cpp
• dense_matrix.cpp
• csr_matrix.cpp
• linear_algebra.cpp
• finite_volume.cpp
include:
• vector.hpp
• dense_matrix.hpp
• csr_matrix.hpp
• linear_algebra.hpp
• finite_volume.hpp
Prior to starting the coursework, please download the CW1_code.zip from Moodle and extract the files. More
information about the contents of the files included in this zip file is given in the questions below.
Hint: When using a C++ struct with header files, the whole struct needs to be defined fully in the header file,
and the header file included in the corresponding .cpp file. Include guards should also be used.
MATH**3 Turn Over
2 MATH**3
In this coursework you will build a 2D finite volume solver for the following PDE boundary value problem
−𝛥w**6; + ∇ ⋅ (bw**6;) = 𝑓 (w**9;, 𝑦) ∈ 𝛺, (1)
w**6; = 𝑔, (w**9;, 𝑦) ∈ 𝜕𝛺, (2)
where 𝑓 ∶ 𝛺 → **7;, 𝑔 ∶ 𝜕𝛺 → **7; and b ∶ 𝛺 → **7;2
.
In order to solve this problem, you will first define a sparse matrix structure, then write functions to apply
the GMRES linear algebra solver and finally build and solve the linear system arising from the finite volume
approximation of (1)-(2).
1. Matrices arising from the discretisation of partial differential equations using, for example, finite volume
methods, are generally sparse in the sense that they have many more zero entries than nonzero ones.
We would like to avoid storing the zero entries and only store the nonzero ones.
A commonly employed sparse matrix storage format is the Compressed Sparse Row (CSR) format. Here,
the nonzero entries of an 𝑛 × 𝑛 matrix are stored in a vector matrix_entries, the vector column_no gives
the column position of the corresponding entries in matrix_entries, while the vector row_start of length
𝑛+1 is the list of indices which indicates where each row starts in matrix_entries. For example, consider
the following:
𝐴 =




8 0 0 2
0 3 1 0
0 0 4 0
6 0 0 7





matrix_entries = (8 2 3 1 4 6 7)
column_no = (0 3 1 2 2 0 3)
row_start = (0 2 4 5 7)
Note, in the above, C++ indexing has been assumed, i.e, indices begin at 0.
(a) In csr_matrix.hpp, define a C++ struct called csr_matrix to store a matrix in CSR format. In
addition to matrix_entries, column_no and row_start, you should store the number of rows of the
matrix explicitly.
(b) In csr_matrix.cpp, write a C++ function that will set up the matrix 𝐴 from above in CSR format.
Remember, if you are using dynamically allocated memory, then you should also have corresponding
functions that will deallocate the memory you have set up.
(c) In csr_matrix.cpp, write a C++ function that takes as input a matrix 𝐴 stored in CSR format and a
vector x and computes the product 𝐴x. The prototype for your function should be:
void MultiplyMatrixVector ( csr_matrix & matrix ,double* vector ,
double* productVector )
Hence, the input vector and the output productVector should be pointers to dynamically allocated
arrays. In particular, it should be assumed that productVector has been preallocated to the correct
size already.
(d) By setting a vector x = (4, −1, 3, 6)⊤, write a test program in q1d.cpp to compute and print to the
screen the product 𝐴x, where 𝐴 is the matrix given above.
[20 marks]
MATH**3
3 MATH**3
2. Suppose we wish to find x ∈ **7;𝑛
such that
𝐴x = b, (3)
where 𝐴 is an 𝑛 × 𝑛 matrix and b ∈ **7;𝑛
.
One algorithm for solving this problem is the (restarted) Generalised Minimal RESidual (GMRES) algorithm.
The method is too complicated to explain here, but works to quickly find approximations x𝑘 = x0 + y𝑘
where y𝑘 ∈ 𝒦𝑘 ∶= Span{𝐴q0
, 𝐴2q0 … 𝐴𝑘q0
} for 𝑘 = 1, 2, …. y𝑘 is chosen to minimise the residual
‖b − 𝐴x𝑘‖2
.
Here x0
is some initial guess vector and q0
is the normed initial residual
q0 =
b − 𝐴x0
‖b − 𝐴x0‖2
.
𝒦𝑘 is called a Krylov subspace of 𝐴.
The algorithm stops when ‖b − 𝐴x𝑘‖2 < tol for some termination tolerance tol. As the method becomes
very memory inefficient when 𝑘 is large, the method is restarted every so often and x𝑘 reset to be x0
.
An incomplete GMRES algorithm function PerformGMRESRestarted() has been written in
linear_algebra.cpp.
A key component of the GMRES algorithm is the Arnoldi iteration that seeks to find an orthonormal basis
of 𝒦𝑘. At the 𝑘th step of the iteration, the Arnoldi method constructs the following matrix decomposition
of 𝐴:
𝐴𝑄𝑘 = 𝑄𝑘+1𝐻̃
𝑘,
where the columns of 𝑄𝑘 (𝑄𝑘+1) contain the orthonormal basis of 𝒦𝑘 (𝒦𝑘+1, resp.) and 𝐻̃
𝑘 is a (𝑘+1)× 𝑘
upper Hessenberg matrix. That is, a matrix that is nearly upper triangular but has non-zero components
on the first subdiagonal.
The 𝑘th step of the Arnoldi algorithm is:
Algorithm 1 One step of the Arnoldi Iteration.
Require: 𝑘 > 0, 𝐴, 𝑄𝑘:
1: Let q𝑖 be the 𝑖th column of 𝑄𝑘.
2: Let h = {ℎ𝑖
}
𝑘+1
𝑖=1 be a vector of length 𝑘 + 1.
3: Compute q𝑘+1 = 𝐴q𝑘
4: for 𝑖 = 1, … , 𝑘 do
5: ℎ𝑖 = q𝑘+1 ⋅ q𝑖
.
6: q𝑘+1 = q𝑘+1 − ℎ𝑖q𝑖
.
7: end for
8: ℎ𝑘+1 = ‖q𝑘+1‖2
.
9: q𝑘+1 = q𝑘+1/ℎ𝑘.
10: 𝑄𝑘+1 = [𝑄𝑘, q𝑘+1].
11: return 𝑄𝑘+1 and h.
(a) In linear_algebra.cpp, write a C++ function which implements one step of the Arnoldi iteration
method defined above.
The function should have the following prototype
void PerformArnoldiIteration ( csr_matrix & matrix ,
dense_matrix & krylov_matrix , int k, double* hessenberg )
MATH**3 Turn Over
4 MATH**3
Here, matrix is 𝐴, k is the step of the iteration to perform, krylov_matrix is the matrix containing
the orthonormal basis, where each row is a basis vector. Upon entry, krylov_matrix should have 𝑘
rows and upon exit it should contain 𝑘 + 1 rows, with the new basis vector in the last row.
Finally, upon exit, hessenberg should contain h, which is the final column of 𝐻̃
𝑘. You may assume that
hessenberg has been preallocated to be of length 𝑘+1 before the call to PerformArnoldiIteration.
Your function should make use, where possible, of prewritten functions defined in dense_matrix.cpp
and vector.cpp. Your code should also make use of the matrix multiplication function from Q1.
Once you have written PerformArnoldiIteration() the GMRES function should function as intended.
Note: Storage of the basis functions in the rows of krylov_matrix, rather than in the columns,
improves efficiency of the code.
(b) In csr_matrix.cpp, write a C++ function that will read from a file a matrix already stored in CSR
format and a vector. You may assume the file structures are as in matrix1.dat and vector1.dat on
Moodle and you may use these data files to test your function.
(c) Write a test program in file q2c.cpp that will read in the matrix 𝐴 from matrix2.dat and the vector
x from vector2.dat, compute b = 𝐴x, then use PerformGMRESRestarted() with the default input
arguments to find an approximation x̂to x. At the end of the calculation, print to the screen the error
‖x − ̂ x‖2
.
[30 marks]
3. The file mesh.hpp contains a struct that defines a mesh data structure mesh for a general mesh comprising
axis-aligned rectangular cells. In particular, each cell in the mesh has an additional struct called
cell_information that contains, among other things, information about the cell neighbours. Familiarise
yourself with these data structures by looking in mesh.hpp.
mesh.cpp contains two functions that will generate meshes, they are:
• ConstructRectangularMesh() - this constructs a mesh on the rectangular domain 𝛺𝑅 = [𝑎, 𝑏] ×
[𝑐, 𝑑].
• ConstructLShapedMesh() - this constructs a mesh on the L-shaped domain 𝛺𝐿 = 𝛺𝑅\𝛺𝐶, where
𝛺𝐶 = [(𝑎 + 𝑏)/2, 𝑏] × [(𝑐 + 𝑑)/2, 𝑑].
(a) In finite_volume.cpp, write a C++ function that will create the storage for a matrix 𝐴 in CSR format
and a RHS vector F required for a cell-centred finite volume method for solving (1)-(2). You should
follow the procedure outlined in the Unit 6 lecture notes. As one of the inputs, your function should
take in a variable of type mesh.
(b) In csr_matrix.cpp, write a C++ function that will output to the screen a matrix stored in CSR format
in the same style as in matrix1.dat.
(c) In Q3c.cpp, write a program that will ask the user to supply the number of cells in each coordinate
direction of a rectangular mesh, sets up the mesh using ConstructRectangularMesh() then calls the
function from part (a) to set up the corresponding matrix and finally prints it to the screen using the
function from part (b).
[30 marks]
MATH**3
5 MATH**3
4. (a) In finite_volume.cpp, write a function that takes in a mesh, uses the function from Q3(a) to construct
𝐴 and F, then populates it with the correct entries to solve problem (1)-(2) using the cell-centred finite
volume method, as outlined in the Unit 6 notes. The function should also take as input the functions
𝑓(w**9;, 𝑦), b(w**9;, 𝑦) and the Dirichlet boundary function 𝑔(w**9;, 𝑦).
(b) In Q4b.cpp, write a main program to ask the user to select from the following problems and supply
the number of cells in each coordinate direction.
1. • Rectangular Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 1;
• 𝑔(w**9;, 𝑦) = 0;
• b = 0.
2. • L-shaped Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 8𝜋2
cos(2𝜋w**9;) cos(2𝜋𝑦);
• 𝑔(w**9;, 𝑦) = cos(2𝜋w**9;) cos(2𝜋𝑦);
• b = 0.
3. • Rectangular Mesh - 𝑎 = −1, 𝑏 = 1, 𝑐 = −1 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 1;
• 𝑔(w**9;, 𝑦) = 0;
• b = (10, 10)⊤.
4. • L-Shaped Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 0;

𝑔(w**9;, 𝑦) = {
1, w**9; = 0, 0.25 < 𝑦 < 0.75,
0, otherwise;
• b = (
50𝑦
√w**9;2+𝑦2
,
−50w**9;
√w**9;2+𝑦2
)

.
The code should then set up the linear system arising from the finite volume discretisation and solve
the system
𝐴uℎ = F
using PerformGMRESRestarted().
Finally, print to the screen the maximum value of uℎ.
Hint: Once you have computed uℎ you can output it to together with the mesh to a file using
OutputSolution() in mesh.cpp. plot_solution.py can then be used to plot the solution in Python.
Note, if you are unable to get the iterative solver from Q2 working, then you may create the finite volume
matrix 𝐴 as if it were a dense matrix (i.e store all the zero entries) and use the function
PerformGaussianElimination() from dense_matrix.cpp to solve the system of equations. This will incur
a small penalty. Note, an illustration of the use of PerformGaussianElimination() can be found in the
main program inside gaussian_elimination_test.cpp.
[20 marks]
MATH**3 End

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:COMP9021代做、代寫Python程序語言
  • 下一篇:代寫CSE 30程序、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲一区免费观看| 国产91精品精华液一区二区三区 | 亚洲永久免费av| 国产一区二区三区久久悠悠色av| 99久久精品免费| 精品久久久久久无| 视频一区视频二区中文字幕| 成人自拍视频在线| 精品精品欲导航| 天天色天天操综合| 欧洲精品一区二区| 综合自拍亚洲综合图不卡区| 国产一区二区视频在线| 91精品国产美女浴室洗澡无遮挡| 一区二区久久久久久| 99久久99久久精品国产片果冻| 日韩欧美国产三级| 青娱乐精品视频| 欧美日韩国产综合久久 | 国产欧美一区二区精品性色| 美女诱惑一区二区| 在线综合亚洲欧美在线视频| 一区二区三区中文字幕| 99久久久久免费精品国产| 欧美国产日韩一二三区| 韩国女主播一区| 亚洲精品一线二线三线| 美女在线一区二区| 精品成人佐山爱一区二区| 麻豆精品视频在线观看视频| 欧美精品九九99久久| 五月天一区二区三区| 91精品综合久久久久久| 日韩精品三区四区| 欧美不卡123| 国产一区欧美二区| 国产欧美精品一区aⅴ影院 | 夜夜操天天操亚洲| 欧亚一区二区三区| 亚洲.国产.中文慕字在线| 图片区日韩欧美亚洲| 亚洲成人三级小说| 成人午夜免费视频| 91精品国产综合久久久久久漫画| 中文字幕免费观看一区| 日本伊人午夜精品| 一本一本久久a久久精品综合麻豆| 91.com视频| 日韩欧美的一区| 狠狠色丁香婷综合久久| 亚洲国产精品激情在线观看| 91蝌蚪porny| 亚洲成人午夜影院| 精品国内二区三区| 91亚洲精品久久久蜜桃网站| 一区二区三区欧美在线观看| 91精品国产一区二区人妖| 国产风韵犹存在线视精品| 亚洲女女做受ⅹxx高潮| 91精品一区二区三区久久久久久| 国产在线播放一区三区四| 国产精品美女久久久久久久| 欧美日韩情趣电影| 国产精一品亚洲二区在线视频| 综合在线观看色| 正在播放亚洲一区| jizzjizzjizz欧美| 蜜臀av性久久久久av蜜臀妖精| 欧美激情综合五月色丁香小说| 在线看不卡av| 国产精品一二三| 亚洲一区二区综合| 久久久精品日韩欧美| 色狠狠桃花综合| 国产一级精品在线| 亚欧色一区w666天堂| 国产精品蜜臀av| 日韩欧美黄色影院| 色老头久久综合| 成人一区二区三区在线观看| 丝袜美腿成人在线| 国产精品天美传媒| www欧美成人18+| 91精品国产色综合久久ai换脸| 99精品一区二区| 国产一区二区中文字幕| 图片区小说区国产精品视频| 亚洲欧美色一区| 国产日韩欧美在线一区| 欧美xxxxx裸体时装秀| 欧美这里有精品| av影院午夜一区| 国产精品亚洲视频| 精品一区二区免费视频| 日av在线不卡| 日韩影视精彩在线| 亚洲综合免费观看高清完整版在线 | 99精品偷自拍| 盗摄精品av一区二区三区| 久久99精品久久久久久| 日韩电影在线一区二区| 国产91精品一区二区麻豆网站 | 尤物在线观看一区| 欧美一卡在线观看| 国产91在线|亚洲| 亚洲动漫第一页| 精品国产伦一区二区三区免费 | 日本不卡123| 日本在线不卡一区| 日日噜噜夜夜狠狠视频欧美人| 一区二区三区欧美在线观看| 亚洲精品国产品国语在线app| 国产精品成人免费| 国产精品蜜臀av| 亚洲视频在线一区观看| 亚洲卡通欧美制服中文| 亚洲欧美日韩在线不卡| 亚洲视频在线一区观看| 亚洲综合免费观看高清完整版在线| 亚洲激情五月婷婷| 亚洲高清免费一级二级三级| 五月开心婷婷久久| 久久国产夜色精品鲁鲁99| 九九久久精品视频| 国产成人精品免费在线| aaa欧美色吧激情视频| 色婷婷av一区二区三区软件| 欧美性大战久久久久久久| 欧美系列亚洲系列| 日韩丝袜情趣美女图片| 久久久亚洲欧洲日产国码αv| 欧美国产欧美亚州国产日韩mv天天看完整| 中文字幕电影一区| 亚洲综合激情网| 蜜臀久久久99精品久久久久久| 韩国欧美国产1区| 99r精品视频| 337p亚洲精品色噜噜狠狠| 欧美成人女星排行榜| 国产无人区一区二区三区| 国产精品二三区| 午夜精品久久久久久久99樱桃| 精品一区二区三区视频在线观看| 成人夜色视频网站在线观看| 在线免费一区三区| 久久这里只有精品视频网| 亚洲欧美日韩国产手机在线| 日韩福利电影在线观看| 波多野结衣在线一区| 欧美性猛交xxxx乱大交退制版 | 欧美成人伊人久久综合网| 日韩美女精品在线| 久久av资源网| 91精彩视频在线观看| 精品久久国产老人久久综合| 亚洲美女屁股眼交| 国内精品国产三级国产a久久| 91免费观看视频在线| 欧美一区二区大片| 亚洲女人****多毛耸耸8| 极品少妇xxxx偷拍精品少妇| 在线亚洲+欧美+日本专区| 久久久精品tv| 日韩成人免费看| 91香蕉视频mp4| 久久综合狠狠综合久久激情| 国产九色sp调教91| 欧美精品久久一区| 亚洲视频精选在线| 国产精品一区二区久激情瑜伽| 一区二区激情视频| 一区二区三区精品视频在线| 亚洲电影中文字幕在线观看| 日本vs亚洲vs韩国一区三区| 国产麻豆精品theporn| 99视频有精品| 8v天堂国产在线一区二区| 久久综合久久鬼色中文字| 亚洲日本一区二区| 欧美成人午夜电影| 一区二区三区中文字幕| 岛国精品在线播放| 国产日韩欧美a| 国产很黄免费观看久久| 精品国产伦一区二区三区观看方式 | 日韩女优av电影在线观看| 亚洲制服丝袜在线| 91视频观看视频| 中文字幕亚洲在| 粉嫩av亚洲一区二区图片| 精品国产一区二区亚洲人成毛片| 日精品一区二区| 欧美日韩电影在线| 亚洲va天堂va国产va久| 欧洲一区二区三区在线| 亚洲高清视频在线| 欧美日韩在线观看一区二区 | av一二三不卡影片| 亚洲欧洲日产国码二区| av不卡在线观看|