99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP9021代做、代寫Python程序語言

時間:2023-11-17  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 2

COMP**21, Trimester 3, 2023

1. General matter

1.1. Aims. The purpose of the assignment is to:

• design and implement an interface based on the desired behaviour of an application program;

• practice the use of Python syntax;

• develop problem solving skills.

1.2. Submission. Your program will be stored in a file named polygons.py. After you have developed and

tested your program, upload it using Ed (unless you worked directly in Ed). Assignments can be submitted

more than once; the last version is marked. Your assignment is due by November 20, 10:00am.

1.3. Assessment. The assignment is worth 13 marks. It is going to be tested against a number of input files.

For each test, the automarking script will let your program run for 30 seconds.

Assignments can be submitted up to 5 days after the deadline. The maximum mark obtainable reduces by

5% per full late day, for up to 5 days. Thus if students A and B hand in assignments worth 12 and 11, both

two days late (that is, more than 24 hours late and no more than 48 hours late), then the maximum mark

obtainable is 11.7, so A gets min(11.7, 11) = 11 and B gets min(11.7, 11) = 11. The outputs of your programs

should be exactly as indicated.

1.4. Reminder on plagiarism policy. You are permitted, indeed encouraged, to discuss ways to solve the

assignment with other people. Such discussions must be in terms of algorithms, not code. But you must

implement the solution on your own. Submissions are routinely scanned for similarities that occur when students

copy and modify other people’s work, or work very closely together on a single implementation. Severe penalties

apply.

2. General presentation

You will design and implement a program that will

• extract and analyse the various characteristics of (simple) polygons, their contours being coded and

stored in a file, and

• – either display those characteristics: perimeter, area, convexity, number of rotations that keep the

polygon invariant, and depth (the length of the longest chain of enclosing polygons)

– or output some Latex code, to be stored in a file, from which a pictorial representation of the

polygons can be produced, coloured in a way which is proportional to their area.

Call encoding any 2-dimensional grid of size between between 2 × 2 and 50 × 50 (both dimensions can be

different) all of whose elements are either 0 or 1.

Call neighbour of a member m of an encoding any of the at most eight members of the grid whose value is 1

and each of both indexes differs from m’s corresponding index by at most 1. Given a particular encoding, we

inductively define for all natural numbers d the set of polygons of depth d (for this encoding) as follows. Let a

natural number d be given, and suppose that for all d

0 < d, the set of polygons of depth d

0 has been defined.

Change in the encoding all 1’s that determine those polygons to 0. Then the set of polygons of depth d is

defined as the set of polygons which can be obtained from that encoding by connecting 1’s with some of their

neighbours in such a way that we obtain a maximal polygon (that is, a polygon which is not included in any

other polygon obtained from that encoding by connecting 1’s with some of their neighbours).

1

2

3. Examples

3.1. First example. The file polys_1.txt has the following contents:

Here is a possible interaction:

$ python3

...

>>> from polygons import *

>>> polys = Polygons('polys_1.txt')

>>> polys.analyse()

Polygon 1:

Perimeter: 78.4

Area: 384.16

Convex: yes

Nb of invariant rotations: 4

Depth: 0

Polygon 2:

Perimeter: 75.2

Area: 353.44

Convex: yes

Nb of invariant rotations: 4

Depth: 1

Polygon 3:

Perimeter: 72.0

Area: **4.00

Convex: yes

Nb of invariant rotations: 4

Depth: 2

Polygon 4:

Perimeter: 68.8

Area: 295.84

Convex: yes

Nb of invariant rotations: 4

Depth: 3

Polygon 5:

Perimeter: 65.6

Area: 268.96

Convex: yes

Nb of invariant rotations: 4

Depth: 4

Polygon 6:

Perimeter: 62.4

Area: 243.36

Convex: yes

Nb of invariant rotations: 4

Depth: 5

Polygon 7:

Perimeter: 59.2

Area: 219.04

Convex: yes

Nb of invariant rotations: 4

Depth: 6

Polygon 8:

Perimeter: 56.0

Area: 196.00

Convex: yes

Nb of invariant rotations: 4

4

Depth: 7

Polygon 9:

Perimeter: 52.8

Area: 174.24

Convex: yes

Nb of invariant rotations: 4

Depth: 8

Polygon 10:

Perimeter: 49.6

Area: 153.76

Convex: yes

Nb of invariant rotations: 4

Depth: 9

Polygon 11:

Perimeter: 46.4

Area: 134.56

Convex: yes

Nb of invariant rotations: 4

Depth: 10

Polygon 12:

Perimeter: 43.2

Area: 116.64

Convex: yes

Nb of invariant rotations: 4

Depth: 11

Polygon 13:

Perimeter: 40.0

Area: 100.00

Convex: yes

Nb of invariant rotations: 4

Depth: 12

Polygon 14:

Perimeter: 36.8

Area: 84.64

Convex: yes

Nb of invariant rotations: 4

Depth: 13

Polygon 15:

Perimeter: 33.6

Area: 70.56

Convex: yes

Nb of invariant rotations: 4

Depth: 14

Polygon 16:

Perimeter: 30.4

Area: 57.76

Convex: yes

Nb of invariant rotations: 4

Depth: 15

Polygon 17:

Perimeter: 27.2

Area: 46.24

Convex: yes

Nb of invariant rotations: 4

5

Depth: 16

Polygon 18:

Perimeter: 24.0

Area: 36.00

Convex: yes

Nb of invariant rotations: 4

Depth: 17

Polygon 19:

Perimeter: 20.8

Area: 27.04

Convex: yes

Nb of invariant rotations: 4

Depth: 18

Polygon 20:

Perimeter: 17.6

Area: 19.36

Convex: yes

Nb of invariant rotations: 4

Depth: 19

Polygon 21:

Perimeter: 14.4

Area: 12.96

Convex: yes

Nb of invariant rotations: 4

Depth: 20

Polygon 22:

Perimeter: 11.2

Area: 7.84

Convex: yes

Nb of invariant rotations: 4

Depth: 21

Polygon 23:

Perimeter: 8.0

Area: 4.00

Convex: yes

Nb of invariant rotations: 4

Depth: 22

Polygon 24:

Perimeter: 4.8

Area: 1.44

Convex: yes

Nb of invariant rotations: 4

Depth: 23

Polygon 25:

Perimeter: 1.6

Area: 0.16

Convex: yes

Nb of invariant rotations: 4

Depth: 24

>>> polys.display()

6

The effect of executing polys.display() is to produce a file named polys_1.tex that can be given as

argument to pdflatex to produce a file named polys_1.pdf that views as follows.

7

3.2. Second example. The file polys_2.txt has the following contents:

Here is a possible interaction:

$ python3

...

>>> from polygons import *

>>> polys = Polygons('polys_2.txt')

>>> polys.analyse()

Polygon 1:

Perimeter: 37.6 + 92*sqrt(.**)

Area: 176.64

Convex: no

Nb of invariant rotations: 2

Depth: 0

Polygon 2:

Perimeter: 17.6 + 42*sqrt(.**)

Area: **.92

Convex: yes

Nb of invariant rotations: 1

Depth: 1

Polygon 3:

Perimeter: 16.0 + 38*sqrt(.**)

Area: 60.80

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 4:

Perimeter: 16.0 + 40*sqrt(.**)

Area: 64.00

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 5:

Perimeter: 14.4 + 34*sqrt(.**)

Area: 48.96

Convex: yes

Nb of invariant rotations: 1

Depth: 3

Polygon 6:

Perimeter: 16.0 + 40*sqrt(.**)

Area: 64.00

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 7:

Perimeter: 12.8 + 30*sqrt(.**)

Area: 38.40

Convex: yes

Nb of invariant rotations: 1

Depth: 4

Polygon 8:

Perimeter: 14.4 + 36*sqrt(.**)

Area: 51.84

Convex: yes

Nb of invariant rotations: 1

9

Depth: 1

Polygon 9:

Perimeter: 11.2 + 26*sqrt(.**)

Area: 29.12

Convex: yes

Nb of invariant rotations: 1

Depth: 5

Polygon 10:

Perimeter: 14.4 + 36*sqrt(.**)

Area: 51.84

Convex: yes

Nb of invariant rotations: 1

Depth: 1

Polygon 11:

Perimeter: 9.6 + 22*sqrt(.**)

Area: 21.12

Convex: yes

Nb of invariant rotations: 1

Depth: 6

Polygon 12:

Perimeter: 12.8 + ***sqrt(.**)

Area: 40.96

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 13:

Perimeter: 8.0 + 18*sqrt(.**)

Area: 14.40

Convex: yes

Nb of invariant rotations: 1

Depth: 7

Polygon 14:

Perimeter: 12.8 + ***sqrt(.**)

Area: 40.96

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 15:

Perimeter: 6.4 + 14*sqrt(.**)

Area: 8.96

Convex: yes

Nb of invariant rotations: 1

Depth: 8

Polygon 16:

Perimeter: 11.2 + 28*sqrt(.**)

Area: 31.36

Convex: yes

Nb of invariant rotations: 1

Depth: 3

Polygon 17:

Perimeter: 4.8 + 10*sqrt(.**)

Area: 4.80

Convex: yes

Nb of invariant rotations: 1

10

Depth: 9

Polygon 18:

Perimeter: 11.2 + 28*sqrt(.**)

Area: 31.36

Convex: yes

Nb of invariant rotations: 1

Depth: 3

Polygon 19:

Perimeter: 3.2 + 6*sqrt(.**)

Area: 1.92

Convex: yes

Nb of invariant rotations: 1

Depth: 10

Polygon 20:

Perimeter: 9.6 + 24*sqrt(.**)

Area: 23.04

Convex: yes

Nb of invariant rotations: 1

Depth: 4

Polygon 21:

Perimeter: 1.6 + 2*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 1

Depth: 11

Polygon 22:

Perimeter: 9.6 + 24*sqrt(.**)

Area: 23.04

Convex: yes

Nb of invariant rotations: 1

Depth: 4

Polygon 23:

Perimeter: 8.0 + 20*sqrt(.**)

Area: 16.00

Convex: yes

Nb of invariant rotations: 1

Depth: 5

Polygon 24:

Perimeter: 8.0 + 20*sqrt(.**)

Area: 16.00

Convex: yes

Nb of invariant rotations: 1

Depth: 5

Polygon 25:

Perimeter: 6.4 + 16*sqrt(.**)

Area: 10.24

Convex: yes

Nb of invariant rotations: 1

Depth: 6

Polygon 26:

Perimeter: 6.4 + 16*sqrt(.**)

Area: 10.24

Convex: yes

Nb of invariant rotations: 1

11

Depth: 6

Polygon 27:

Perimeter: 4.8 + 12*sqrt(.**)

Area: 5.76

Convex: yes

Nb of invariant rotations: 1

Depth: 7

Polygon 28:

Perimeter: 4.8 + 12*sqrt(.**)

Area: 5.76

Convex: yes

Nb of invariant rotations: 1

Depth: 7

Polygon 29:

Perimeter: 3.2 + 8*sqrt(.**)

Area: 2.56

Convex: yes

Nb of invariant rotations: 1

Depth: 8

Polygon 30:

Perimeter: 3.2 + 8*sqrt(.**)

Area: 2.56

Convex: yes

Nb of invariant rotations: 1

Depth: 8

Polygon 31:

Perimeter: 1.6 + 4*sqrt(.**)

Area: 0.64

Convex: yes

Nb of invariant rotations: 1

Depth: 9

Polygon **:

Perimeter: 1.6 + 4*sqrt(.**)

Area: 0.64

Convex: yes

Nb of invariant rotations: 1

Depth: 9

Polygon 33:

Perimeter: 17.6 + 42*sqrt(.**)

Area: **.92

Convex: yes

Nb of invariant rotations: 1

Depth: 1

Polygon 34:

Perimeter: 16.0 + 38*sqrt(.**)

Area: 60.80

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 35:

Perimeter: 14.4 + 34*sqrt(.**)

Area: 48.96

Convex: yes

Nb of invariant rotations: 1

12

Depth: 3

Polygon 36:

Perimeter: 12.8 + 30*sqrt(.**)

Area: 38.40

Convex: yes

Nb of invariant rotations: 1

Depth: 4

Polygon 37:

Perimeter: 11.2 + 26*sqrt(.**)

Area: 29.12

Convex: yes

Nb of invariant rotations: 1

Depth: 5

Polygon 38:

Perimeter: 9.6 + 22*sqrt(.**)

Area: 21.12

Convex: yes

Nb of invariant rotations: 1

Depth: 6

Polygon 39:

Perimeter: 8.0 + 18*sqrt(.**)

Area: 14.40

Convex: yes

Nb of invariant rotations: 1

Depth: 7

Polygon 40:

Perimeter: 6.4 + 14*sqrt(.**)

Area: 8.96

Convex: yes

Nb of invariant rotations: 1

Depth: 8

Polygon 41:

Perimeter: 4.8 + 10*sqrt(.**)

Area: 4.80

Convex: yes

Nb of invariant rotations: 1

Depth: 9

Polygon 42:

Perimeter: 3.2 + 6*sqrt(.**)

Area: 1.92

Convex: yes

Nb of invariant rotations: 1

Depth: 10

Polygon 43:

Perimeter: 1.6 + 2*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 1

Depth: 11

>>> polys.display()

13

The effect of executing polys.display() is to produce a file named polys_2.tex that can be given as

argument to pdflatex to produce a file named polys_2.pdf that views as follows.

14

3.3. Third example. The file polys_3.txt has the following contents:

Here is a possible interaction:

$ python3

...

>>> from polygons import *

>>> polys = Polygons('polys_3.txt')

>>> polys.analyse()

Polygon 1:

Perimeter: 2.4 + 9*sqrt(.**)

Area: 2.80

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 2:

Perimeter: 51.2 + 4*sqrt(.**)

Area: 117.28

Convex: no

Nb of invariant rotations: 2

Depth: 0

Polygon 3:

Perimeter: 2.4 + 9*sqrt(.**)

Area: 2.80

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 4:

Perimeter: 17.6 + 40*sqrt(.**)

Area: 59.04

Convex: no

Nb of invariant rotations: 2

Depth: 1

Polygon 5:

Perimeter: 3.2 + 28*sqrt(.**)

Area: 9.76

Convex: no

Nb of invariant rotations: 1

Depth: 2

Polygon 6:

Perimeter: 27.2 + 6*sqrt(.**)

Area: 5.76

Convex: no

Nb of invariant rotations: 1

Depth: 2

Polygon 7:

Perimeter: 4.8 + 14*sqrt(.**)

Area: 6.72

Convex: no

Nb of invariant rotations: 1

Depth: 1

Polygon 8:

Perimeter: 4.8 + 14*sqrt(.**)

Area: 6.72

Convex: no

Nb of invariant rotations: 1

16

Depth: 1

Polygon 9:

Perimeter: 3.2 + 2*sqrt(.**)

Area: 1.12

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 10:

Perimeter: 3.2 + 2*sqrt(.**)

Area: 1.12

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 11:

Perimeter: 2.4 + 9*sqrt(.**)

Area: 2.80

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 12:

Perimeter: 2.4 + 9*sqrt(.**)

Area: 2.80

Convex: no

Nb of invariant rotations: 1

Depth: 0

>>> polys.display()

The effect of executing polys.display() is to produce a file named polys_3.tex that can be given as

argument to pdflatex to produce a file named polys_3.pdf that views as follows.

17

3.4. Fourth example. The file polys_4.txt has the following contents:

Here is a possible interaction:

$ python3

...

>>> from polygons import *

>>> polys = Polygons('polys_4.txt')

>>> polys.analyse()

Polygon 1:

Perimeter: 11.2 + 28*sqrt(.**)

Area: 18.88

Convex: no

Nb of invariant rotations: 2

Depth: 0

Polygon 2:

Perimeter: 3.2 + 5*sqrt(.**)

Area: 2.00

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 3:

Perimeter: 1.6 + 6*sqrt(.**)

Area: 1.76

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 4:

Perimeter: 3.2 + 1*sqrt(.**)

Area: 0.88

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 5:

Perimeter: 4*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 4

Depth: 1

Polygon 6:

Perimeter: 4*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 4

Depth: 1

Polygon 7:

Perimeter: 4*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 4

Depth: 1

Polygon 8:

Perimeter: 4*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 4

19

Depth: 1

Polygon 9:

Perimeter: 1.6 + 1*sqrt(.**)

Area: 0.24

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 10:

Perimeter: 0.8 + 2*sqrt(.**)

Area: 0.16

Convex: yes

Nb of invariant rotations: 2

Depth: 0

Polygon 11:

Perimeter: 12.0 + 7*sqrt(.**)

Area: 5.68

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 12:

Perimeter: 2.4 + 3*sqrt(.**)

Area: 0.88

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 13:

Perimeter: 1.6

Area: 0.16

Convex: yes

Nb of invariant rotations: 4

Depth: 0

Polygon 14:

Perimeter: 5.6 + 3*sqrt(.**)

Area: 1.36

Convex: no

Nb of invariant rotations: 1

Depth: 0

>>> polys.display()

The effect of executing polys.display() is to produce a file named polys_4.tex that can be given as

argument to pdflatex to produce a file named polys_4.pdf that views as follows.

20

4. Detailed description

4.1. Input. The input is expected to consist of ydim lines of xdim 0’s and 1’s, where xdim and ydim are at

least equal to 2 and at most equal to 50, with possibly lines consisting of spaces only that will be ignored and

with possibly spaces anywhere on the lines with digits. If n is the x

th digit of the y

th line with digits, with

0 ≤ x < xdim and 0 ≤ y < ydim , then n is to be associated with a point situated x × 0.4 cm to the right and

y × 0.4 cm below an origin.

4.2. Output. Consider executing from the Python prompt the statement from polygons import * followed

by the statement polys = Polygons(some_filename). In case some_filename does not exist in the working

directory, then Python will raise a FileNotFoundError exception, that does not need to be caught. Assume

that some_filename does exist (in the working directory). If the input is incorrect in that it does not contain

only 0’s and 1’a besides spaces, or in that it contains either too few or too many lines of digits, or in that

some line of digits contains too many or too few digits, or in that two of its lines of digits do not contain the

same number of digits, then the effect of executing polys = Polygons(some_filename) should be to generate

a PolygonsError exception that reads

Traceback (most recent call last):

...

polygons.PolygonsError: Incorrect input.

If the previous conditions hold but it is not possible to use all 1’s in the input and make them the contours

of polygons of depth d, for any natural number d, as defined in the general presentation, then the effect of

executing polys = Polygons(some_filename) should be to generate a PolygonsError exception that reads

Traceback (most recent call last):

...

polygons.PolygonsError: Cannot get polygons as expected.

If the input is correct and it is possible to use all 1’s in the input and make them the contours of polygons

of depth d, for any natural number d, as defined in the general presentation, then executing the statement

polys = Polygons(some_filename) followed by polys.analyse() should have the effect of outputting a first

line that reads

Polygon N:

with N an appropriate integer at least equal to 1 to refer to the N’th polygon listed in the order of polygons

with highest point from smallest value of y to largest value of y, and for a given value of y, from smallest value

of x to largest value of x, a second line that reads one of

Perimeter: a + b*sqrt(.**)

Perimeter: a

Perimeter: b*sqrt(.**)

with a an appropriate strictly positive floating point number with 1 digit after the decimal point and b an

appropriate strictly positive integer, a third line that reads

Area: a

with a an appropriate floating point number with 2 digits after the decimal point, a fourth line that reads one

of

Convex: yes

Convex: no

a fifth line that reads

Nb of invariant rotations: N

21

with N an appropriate integer at least equal to 1, and a sixth line that reads

Depth: N

with N an appropriate positive integer (possibly 0).

Pay attention to the expected format, including spaces.

If the input is correct and it is possible to use all 1’s in the input and make them the contours of polygons of depth d, for any natural number d, as defined in the general presentation, then executing the statement polys = Polygons(some_filename) followed by polys.display() should have the effect of producing a file named some_filename.tex that can be given as argument to pdflatex to generate a file named

some_filename.pdf. The provided examples will show you what some_filename.tex should contain.

• Polygons are drawn from lowest to highest depth, and for a given depth, the same ordering as previously

described is used.

• The point that determines the polygon index is used as a starting point in drawing the line segments

that make up the polygon, in a clockwise manner.

• A polygons’s colour is determined by its area. The largest polygons are yellow. The smallest polygons

are orange. Polygons in-between mix orange and yellow in proportion of their area. For instance, a

polygon whose size is 25% the difference of the size between the largest and the smallest polygon will

receive 25% of orange (and 75% of yellow). That proportion is computed as an integer. When the value

is not an integer, it is rounded to the closest integer, with values of the form z.5 rounded up to z + 1.

Pay attention to the expected format, including spaces and blank lines. Lines that start with % are comments.

The output of your program redirected to a file will be compared with the expected output saved in a file (of a

different name of course) using the diff command. For your program to pass the associated test, diff should

silently exit, which requires that the contents of both files be absolutely identical, character for character,

including spaces and blank lines. Check your program on the provided examples using the associated .tex files,

renaming them as they have the names of the files expected to be generated by your program.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫股票指標 代做股票公式 代寫大智慧公式
  • 下一篇:MATH4063代做、代寫C++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          一区二区视频在线观看| 久久久欧美一区二区| 中文av一区特黄| 女同一区二区| 久久成人精品视频| 亚洲美女黄色片| 黄色一区二区三区四区| 亚洲午夜影视影院在线观看| 一区在线电影| 国产欧美在线播放| 午夜伦欧美伦电影理论片| 91久久香蕉国产日韩欧美9色| 国产日韩精品久久| 国产精品久久久久婷婷| 欧美精品日韩精品| 老司机精品视频网站| 欧美资源在线| 久久精品国产视频| 亚洲国产精品成人综合| 国产日韩一级二级三级| 久久全球大尺度高清视频| 午夜精品久久久久久久蜜桃app| 亚洲国产综合视频在线观看| 伊人久久成人| 在线色欧美三级视频| 国产一区日韩一区| 国产一区二区三区最好精华液| 巨乳诱惑日韩免费av| 亚洲精品欧美专区| 亚洲精品在线一区二区| 国产精品伦一区| 国产精品久久激情| 国产伦理精品不卡| 欧美高清一区二区| 欧美了一区在线观看| 欧美日韩免费看| 国产精品毛片a∨一区二区三区|国 | 欧美日韩中文在线| 欧美午夜精品一区| 国产精品亚洲一区二区三区在线| 国产精品丝袜91| 国产在线视频不卡二| 一区二区自拍| 亚洲免费福利视频| 亚洲欧美成aⅴ人在线观看| 欧美一区二区三区免费看| 欧美在线日韩精品| 米奇777超碰欧美日韩亚洲| 亚洲天堂免费在线观看视频| 亚洲一区二区视频在线| 久久国产精品久久精品国产| 美女网站在线免费欧美精品| 欧美日韩aaaaa| 国产性做久久久久久| 亚洲国产精品成人一区二区| 在线视频精品一| 久久久久久综合网天天| 欧美精品一区三区| 国产亚洲欧美一区在线观看| 亚洲第一页中文字幕| 亚洲一区二区3| 免费在线亚洲欧美| 国产精品私房写真福利视频| 在线欧美三区| 亚洲欧美日韩在线播放| 亚洲午夜精品一区二区三区他趣 | 欧美性一区二区| 一区二区三区亚洲| 亚洲在线中文字幕| 欧美成人免费在线| 国产一区深夜福利| 亚洲欧美另类在线| 欧美激情国产日韩| 亚洲第一视频| 久久精品欧洲| 国产精品啊啊啊| 亚洲精品一区二区在线观看| 欧美在线视频一区| 国产精品欧美日韩一区| 国产精品露脸自拍| 日韩视频二区| 另类天堂av| 欧美精品一区二区三区一线天视频| 国产精品一区二区黑丝| 亚洲视频999| 欧美激情综合色| 亚洲国产精品va在线观看黑人| 香蕉久久一区二区不卡无毒影院| 欧美日韩国产成人在线| 亚洲欧洲精品一区二区| 美女视频一区免费观看| 国产一区二区在线免费观看| 亚洲天堂av图片| 欧美日韩亚洲一区二区三区四区| 亚洲欧洲一区二区天堂久久| 免费观看在线综合色| 在线免费观看视频一区| 久久性色av| 亚洲国产成人精品久久| 欧美jizz19性欧美| 91久久久久久久久| 欧美久久99| 99视频精品在线| 欧美性一二三区| 亚洲一品av免费观看| 国产精品久久久久久模特| 亚洲在线视频观看| 国产视频在线观看一区二区三区| 亚洲欧美日本在线| 国产在线精品自拍| 裸体丰满少妇做受久久99精品| 亚洲二区免费| 欧美久久视频| 亚洲欧美视频在线观看视频| 国产视频欧美视频| 农村妇女精品| 亚洲一卡久久| 国精产品99永久一区一区| 久久久噜噜噜久久| 亚洲精品一区在线观看香蕉| 国产精品久久网| 久久精品免费看| 亚洲精品日日夜夜| 国产日韩在线视频| 欧美极品欧美精品欧美视频| 国产精品99久久久久久白浆小说 | 亚洲欧美国产另类| 经典三级久久| 欧美午夜国产| 老鸭窝91久久精品色噜噜导演| 一区二区欧美在线观看| 免费高清在线一区| 亚洲视频在线观看| 亚洲国产电影| 国产欧美va欧美va香蕉在| 美女爽到呻吟久久久久| 亚洲在线免费| 日韩一级在线| 经典三级久久| 国产精品一区二区在线观看网站| 麻豆9191精品国产| 亚洲欧美日韩成人高清在线一区| 亚洲第一精品夜夜躁人人躁| 欧美亚州一区二区三区| 老司机免费视频一区二区| 亚洲综合色视频| av成人天堂| 亚洲精品久久嫩草网站秘色 | 韩国女主播一区| 久久久国产精品一区二区中文 | 欧美一区二区日韩| 日韩系列在线| 亚洲高清激情| 在线免费观看日本欧美| 国产亚洲一区二区三区在线观看| 欧美日韩欧美一区二区| 欧美国产精品va在线观看| 久久久精彩视频| 久久gogo国模啪啪人体图| 亚洲一区二区三区四区五区午夜| 亚洲国产成人高清精品| 在线观看日韩精品| 亚洲国产二区| 有码中文亚洲精品| 一区在线观看视频| 在线成人中文字幕| 亚洲国产成人精品久久久国产成人一区| 国产三区精品| 激情欧美亚洲| 在线播放豆国产99亚洲| 在线精品视频一区二区三四| 激情国产一区二区| 一色屋精品视频在线看| 亚洲第一中文字幕| 亚洲全部视频| 在线一区二区三区四区五区| 99精品久久免费看蜜臀剧情介绍| 欧美视频在线观看| 老色鬼久久亚洲一区二区| 美女诱惑一区| 欧美日韩在线播放一区二区| 国产精品三上| 一区二区亚洲精品国产| 亚洲精品国精品久久99热一| 亚洲日本中文| 先锋亚洲精品| 久久久爽爽爽美女图片| 欧美福利影院| 国产精品久久久久一区二区三区共 | 久久aⅴ国产欧美74aaa| 久久国产视频网站| 你懂的一区二区| 欧美一级网站| 美女视频网站黄色亚洲| 欧美日本国产一区| 国产精品一二三四区| 亚洲第一黄网| 亚洲一区二区黄| 免费中文日韩| 国产精品久久久久久久久婷婷|