合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做MATH2110、Java/Python程序語言代寫
        代做MATH2110、Java/Python程序語言代寫

        時間:2025-04-05  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        1 MATH2110
        The University of Nottingham
        SCHOOL OF MATHEMATICAL SCIENCES
        SPRING SEMESTER 2025
        MATH2110 - STATISTICS 3
        Coursework 2
        Deadline: 3pm, Friday 2/5/2025
        Your neat, clearly-legible solutions should be submitted electronically as a pdf file via the MATH2110 Moodle
        page by the deadline indicated there. As this work is assessed, your submission must be entirely your own
        work (see the University’s policy on Academic Misconduct).
        Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark per working
        day.
        Deadline extensions due to Support Plans and Extenuating Circumstances can be requested according to
        School and University policies, as applicable to this module. Because of these policies, solutions (where
        appropriate) and feedback cannot normally be released earlier than 10 working days after the main cohort
        submission deadline.
        The page limit is 8 pages and the minimum font size is 11.
        THE DATA
        As a medical statistician of the 19th century, your task is to assess associations between the fertility of different
        Swiss regions and certain social parameters. The goal is to identify the most influential variables, select the
        best model, and make predictions using it. You have data for 47 regions with the following variables:
        • Fertility, standardised fertility measure.
        • Agriculture, percentage of males involved in agriculture as occupation
        • Examination, percentage draftees receiving highest mark on army examination
        • Education, percentage education beyond primary school for draftees.
        • Catholic, percentage of catholic.
        • Infant.Mortality, normalised proportion of live births who live less than 1 year.
        You can load the data by running the 𝑅 command data(swiss). The only packages that may be used are
        “BayesFactor” and “MASS”.
        MATH2110 Turn Over
        2 MATH2110
        THE TASKS
        First divide the data into a training set (70% - 33 observations) and a test set (30% - 14 observations). All the
        fitting and selection should be done using exclusively the train set. To avoid having correlations during the
        train/test division, use the function sample() to randomly choose both groups.
        All modelling should be using Bayesian Normal linear models and use priors:
        𝛽|𝜎2 ∼ 𝑁 (0, 100Ip
        )
        𝜎
        2 ∼ 𝐼𝐺(2, 2),
        where Ip
        is the 𝑝 × 𝑝 identity matrix and 𝐼𝐺 denotes the inverse-gamma distribution.
        1. Consider the relationship between Examination and Fertility.
        • Perform an exploratory analysis of the relationship between Examination and Fertility.
        • Fit a Bayesian Normal linear model with Fertility as the dependent variable and Examination as the
        independent variable.
        • Write down the selected model posterior.
        • Sample 10 sets of parameters from the posterior distribution and plot the resulting linear model for
        each set of sampled parameters.
        [20 marks]
        2. Consider the relationship between Catholic and Fertility.
        • Perform an exploratory analysis of the relationship between Catholic and Fertility.
        • Create a new variable Catholic.Transform = (Catholic − 𝛼)2
        for a suitable choice of 0 ≤ 𝛼 ≤ 100.
        • Fit a Bayesian Normal linear model with Fertility as the dependent variable and Catholic.Transform
        as the independent variable.
        • Write down the selected model posterior.
        • Using the posterior mean for the parameters of the linear model consider the model fit.
        [25 marks]
        3. Use Bayes Factors to determine which of the models in 1 and 2 best fits the data. [5 marks]
        4. Consider general linear models for modelling Fertility as a function of the covariates.
        • Perform model selection to choose a model and justify your choice of model.
        • Write down the selected model posterior.
        • Draw samples from the corresponding posterior.
        • Present histograms (using function hist()) for the samples of each parameter.
        • Compute estimates of the parameters and compare them.
        • Make predictions for the Fertility values in the test set.
        • Compare these with the real values.
        [50 marks]
        MATH2110 End

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

        掃一掃在手機打開當前頁
      1. 上一篇:天天花卡客服電話-天天花卡24小時客服熱線電話
      2. 下一篇:代寫HIM3002、代做Python編程語言
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 国产成人精品一区二区三区无码 | 日本一区二区三区爆乳| 精品亚洲A∨无码一区二区三区| 日韩一区精品视频一区二区| 亚洲一区中文字幕在线观看| 成人一区专区在线观看| 亚洲高清偷拍一区二区三区| 一夲道无码人妻精品一区二区| 国产爆乳无码一区二区麻豆| 亚洲日韩中文字幕无码一区| 无码av中文一区二区三区桃花岛| 精品国产一区在线观看| 一区二区视频在线| 精品人妻少妇一区二区三区在线 | 黑巨人与欧美精品一区| 一区三区三区不卡| 无码aⅴ精品一区二区三区| 少妇无码一区二区二三区| aⅴ一区二区三区无卡无码| 精品国产一区二区三区不卡 | 亚洲一区二区中文| 中文字幕一区二区视频| 免费一区二区三区在线视频| 麻豆AV无码精品一区二区| 亚洲AV无码一区二区乱孑伦AS| 武侠古典一区二区三区中文| 国产主播一区二区三区在线观看| 亚洲美女一区二区三区| 亚洲午夜电影一区二区三区 | 国产午夜毛片一区二区三区| 精品人妻一区二区三区四区在线 | 国产精品免费一区二区三区四区| 亚洲国产精品一区二区久久hs| 日本在线电影一区二区三区 | 亚洲AV综合色区无码一区爱AV| 99久久精品费精品国产一区二区| 成人午夜视频精品一区| 久久一区不卡中文字幕| 国产精品无码一区二区在线观| 日本一区二区三区爆乳| 人妻体内射精一区二区|