99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫MATH38161、代做R程序設(shè)計
代寫MATH38161、代做R程序設(shè)計

時間:2024-11-25  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設(shè)計編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                91麻豆精品国产自产在线| 亚洲夂夂婷婷色拍ww47| 韩国在线一区二区| 国产91精品一区二区麻豆亚洲| 成人美女视频在线看| 欧美色精品在线视频| 久久影院视频免费| 亚洲国产成人av好男人在线观看| 久久91精品国产91久久小草| av不卡在线观看| 欧美大度的电影原声| 一区二区三区四区蜜桃| 国产精品一区二区视频| 欧美一区二区三区在线观看 | 久久久久久一二三区| 亚洲精品福利视频网站| 国产乱码精品一区二区三| 欧美日韩国产美女| 国产精品短视频| 国内不卡的二区三区中文字幕| 91国在线观看| 国产精品人妖ts系列视频| 美女视频网站久久| 欧美日韩精品二区第二页| 亚洲日韩欧美一区二区在线| 国产成人在线网站| 日韩一区二区三区视频在线| 亚洲国产日韩一区二区| 色综合久久天天| 国产亚洲美州欧州综合国| 免费日韩伦理电影| 欧美久久久久久久久久| 曰韩精品一区二区| 99精品视频一区| 最新国产精品久久精品| 丁香激情综合五月| 国产亚洲成aⅴ人片在线观看| 久久国产精品99久久人人澡| 日韩亚洲欧美在线观看| 麻豆成人久久精品二区三区小说| 欧美巨大另类极品videosbest| 夜夜夜精品看看| 欧美三级乱人伦电影| 午夜不卡在线视频| 欧美精品一级二级三级| 午夜激情一区二区| 日韩欧美一区中文| 久久99这里只有精品| 欧美大胆人体bbbb| 国产成人精品网址| 国产精品久久久久毛片软件| 一本色道久久综合精品竹菊| 亚洲人精品午夜| 欧美日韩你懂得| 欧美96一区二区免费视频| 日韩视频免费观看高清完整版在线观看 | 欧美日韩一本到| 天堂一区二区在线免费观看| 欧美一区二区黄色| 久久精品国产第一区二区三区| 久久久影院官网| 成人午夜精品在线| 亚洲欧美日本韩国| 欧美一二三区在线观看| 国产高清亚洲一区| 亚洲精品乱码久久久久| 欧美一三区三区四区免费在线看 | 91麻豆精品国产自产在线观看一区 | 欧美一区二区三区在线看| 国产福利不卡视频| 亚洲色欲色欲www在线观看| 欧美日韩色一区| 国产精品一区二区久久精品爱涩| 国产精品乱码人人做人人爱| 欧美午夜片在线观看| 蜜桃视频第一区免费观看| 欧美极品xxx| 欧美日韩激情一区| 国产91精品精华液一区二区三区| 亚洲视频小说图片| 日韩免费在线观看| eeuss鲁片一区二区三区| 日韩精品视频网站| 亚洲欧洲性图库| 欧美一区二区三区视频在线| 97久久久精品综合88久久| 捆绑调教一区二区三区| 一区二区三区中文字幕精品精品 | 久久超级碰视频| 亚洲色图清纯唯美| 国产日韩欧美高清在线| 欧美日韩日日夜夜| 97久久超碰国产精品电影| 精品一区二区久久久| 亚洲成人免费影院| **欧美大码日韩| 久久亚洲春色中文字幕久久久| 欧美午夜精品一区二区蜜桃 | 91毛片在线观看| 国内不卡的二区三区中文字幕| 亚洲一区二区三区不卡国产欧美| 国产精品丝袜一区| 欧美电影免费观看高清完整版在线 | 亚洲欧美日韩国产中文在线| 欧美国产激情一区二区三区蜜月 | 日韩精品1区2区3区| 亚洲人成在线播放网站岛国| 国产精品欧美一级免费| 精品动漫一区二区三区在线观看| 欧美日韩免费一区二区三区视频 | 亚洲摸摸操操av| 国产精品丝袜在线| 国产视频一区二区在线观看| 日韩精品一区二区三区在线| 欧美精品777| 欧美午夜精品一区二区三区| 欧美综合久久久| 91极品美女在线| 一本久久综合亚洲鲁鲁五月天 | 欧美色网站导航| 色悠久久久久综合欧美99| 99re免费视频精品全部| 99久久精品免费| 成人免费高清视频在线观看| 国产成a人亚洲| 成人午夜av电影| 成人一区二区视频| www.66久久| 色哟哟国产精品| 欧美日韩国产不卡| 欧美系列日韩一区| 91麻豆精品国产91久久久更新时间| 欧美优质美女网站| 69精品人人人人| 7777精品伊人久久久大香线蕉完整版 | 亚洲精品欧美综合四区| 一区二区三区国产豹纹内裤在线| 亚洲一区二区三区四区在线观看| 一区二区三区四区视频精品免费| 亚洲成人动漫av| 久久99九九99精品| 国产精品一区在线观看乱码| 不卡视频免费播放| 91欧美激情一区二区三区成人| 色狠狠综合天天综合综合| 欧美日韩三级一区二区| 日韩亚洲欧美综合| 欧美国产日韩一二三区| 亚洲激情校园春色| 男女男精品网站| 成人亚洲一区二区一| 91精品办公室少妇高潮对白| 欧美一级视频精品观看| 久久天堂av综合合色蜜桃网| 亚洲免费在线观看视频| 日产精品久久久久久久性色| 国产成人综合亚洲网站| 在线免费一区三区| 国产亚洲精品久| 亚洲国产毛片aaaaa无费看| 久久精品国产免费| 在线观看不卡一区| 久久日一线二线三线suv| 亚洲女女做受ⅹxx高潮| 久久国产视频网| 欧美性做爰猛烈叫床潮| 精品国产91久久久久久久妲己| 亚洲天堂网中文字| 美女被吸乳得到大胸91| 91丨porny丨首页| 日韩精品一区二区三区视频在线观看 | 亚洲乱码精品一二三四区日韩在线| 日韩av中文字幕一区二区| 91在线视频在线| 日韩你懂的在线观看| 亚洲伦在线观看| 国产成人免费9x9x人网站视频| 精品视频123区在线观看| 久久精品一区二区| 日本中文字幕不卡| 在线观看日产精品| 亚洲欧洲日韩一区二区三区| 九一久久久久久| 欧美日韩精品一区二区三区 | 91在线观看地址| 精品国产乱码久久久久久牛牛| 一区二区三区不卡在线观看| 国产成人aaa| 日韩一区国产二区欧美三区| 一区二区三区日韩在线观看| 成人亚洲一区二区一| 精品欧美一区二区在线观看| 日韩综合小视频| 91久久香蕉国产日韩欧美9色| 日本一区二区在线不卡| 国产一区二区三区在线观看精品| 欧美电影在哪看比较好| 午夜精品福利久久久| 欧美精品丝袜中出| 午夜精品福利在线|