99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH38161、代做R程序設計
代寫MATH38161、代做R程序設計

時間:2024-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲一区二区少妇| 欧美日韩午夜视频在线观看| 国产精品天天看| 亚洲精品乱码久久久久久| 久久午夜羞羞影院免费观看| 国产日韩欧美亚洲| 午夜精品一区二区在线观看| 欧美日韩ab| 亚洲精品美女91| 欧美大片在线观看一区二区| 在线日韩成人| 蜜臀va亚洲va欧美va天堂| 国内偷自视频区视频综合| 欧美一区二区三区四区高清| 国产午夜精品久久| 久久精品日产第一区二区| 国产真实久久| 久久久久一区二区三区| 狠狠综合久久av一区二区小说 | 亚洲视频电影图片偷拍一区| 欧美日韩免费观看一区| 一本大道av伊人久久综合| 欧美久久影院| 一区二区三区不卡视频在线观看 | 亚洲欧洲另类国产综合| 欧美成黄导航| 亚洲卡通欧美制服中文| 欧美视频导航| 午夜精品一区二区在线观看| 国产偷久久久精品专区| 久久精品一二三区| 亚洲福利在线看| 欧美精品videossex性护士| 99re在线精品| 国产精品天美传媒入口| 久久精品五月| 亚洲日本中文| 国产精品久久久久99| 欧美在线影院| 亚洲国产精品久久久久秋霞不卡| 欧美黑人国产人伦爽爽爽| 99国内精品久久| 国产乱理伦片在线观看夜一区| 久久成人精品| 亚洲精品欧美极品| 国产精品美女www爽爽爽视频| 久久久精品国产免费观看同学 | 精品91久久久久| 欧美精品1区2区| 亚洲欧美日韩精品久久亚洲区| 国产真实乱偷精品视频免| 女人香蕉久久**毛片精品| 亚洲午夜精品一区二区三区他趣| 国产日韩精品电影| 欧美激情在线观看| 欧美在线啊v| 亚洲三级视频| 国产亚洲欧美一区二区| 欧美理论在线播放| 久久九九国产| 亚洲天堂成人| 亚洲国产三级网| 国产欧美一区在线| 欧美日韩人人澡狠狠躁视频| 久久免费高清视频| 亚洲午夜伦理| 91久久久久| 依依成人综合视频| 国产精品视频内| 欧美日韩一区自拍| 欧美暴力喷水在线| 久久精品1区| 午夜日韩激情| 中日韩美女免费视频网址在线观看 | 国产亚洲精品v| 国产精品国色综合久久| 欧美国产日韩精品| 老鸭窝91久久精品色噜噜导演| 亚洲愉拍自拍另类高清精品| 亚洲国产欧美不卡在线观看| 国产一区二区久久精品| 国产精品久久久久久久久久三级 | 亚洲福利av| 精品1区2区| 国产香蕉97碰碰久久人人| 欧美性大战久久久久久久蜜臀| 欧美精品一区三区| 欧美mv日韩mv国产网站app| 久久免费视频这里只有精品| 性色av一区二区三区| 国产精品99久久久久久人| 一区二区欧美在线| 一区二区三区四区国产精品| 亚洲最快最全在线视频| 99国产麻豆精品| 99亚洲视频| 99在线热播精品免费99热| 亚洲美女色禁图| 99精品国产高清一区二区| 亚洲人成欧美中文字幕| 亚洲精品免费在线观看| 亚洲另类视频| av成人免费| 亚洲午夜日本在线观看| 亚洲视频免费观看| 亚洲欧美综合另类中字| 欧美在线免费观看视频| 久久久久99精品国产片| 免费成人你懂的| 欧美日本韩国一区| 国产精品久久久久久久久久免费看| 国产精品久久久久一区二区三区共| 国产精品久久网| 韩国欧美一区| 1000部国产精品成人观看| 亚洲福利国产| 一区二区三区高清在线| 午夜一区二区三视频在线观看| 久久成人国产| 欧美激情一区在线观看| 国产精品区一区二区三区| 国产午夜精品久久久| 亚洲春色另类小说| 一区二区三区免费看| 午夜精品亚洲一区二区三区嫩草| 久久久久在线观看| 欧美精品麻豆| 国产亚洲欧美一区| 亚洲精品一区在线| 午夜精品福利一区二区三区av| 久久在线免费观看视频| 欧美日韩在线视频一区| 国产欧美在线视频| 亚洲精品免费在线播放| 欧美一级在线亚洲天堂| 欧美精品少妇一区二区三区| 国产免费成人av| 亚洲精品乱码久久久久久黑人| 午夜精品久久久久久久久久久| 麻豆国产精品一区二区三区 | 欧美吻胸吃奶大尺度电影| 韩国av一区二区| 一区二区三区精品久久久| 久久久亚洲欧洲日产国码αv | 久久精品夜夜夜夜久久| 欧美极品一区| 狠狠狠色丁香婷婷综合久久五月| 国产精品99久久久久久久女警 | 国产精品婷婷| 亚洲免费高清| 久久婷婷av| 国产精品久久久久一区二区三区共| 怡红院精品视频| 欧美一区二区三区日韩视频| 欧美精品一区在线观看| 一区久久精品| 欧美一区二区在线免费播放| 欧美日韩在线亚洲一区蜜芽| 亚洲福利视频一区| 久久久久久九九九九| 国产精品成人在线观看| 亚洲破处大片| 另类欧美日韩国产在线| 韩国在线一区| 久久精品国产99| 国产精品一区在线播放| 亚洲欧美国产77777| 欧美日韩中字| 亚洲最新中文字幕| 欧美激情中文字幕在线| 亚洲第一搞黄网站| 久久免费视频在线观看| 国产主播一区二区| 欧美亚洲一区三区| 国产欧美一区二区三区在线老狼| 亚洲欧美久久久久一区二区三区| 欧美午夜精品久久久久久久| 99国产精品自拍| 欧美日韩在线三区| 亚洲一区自拍| 国产精品日韩欧美一区| 亚洲一区在线看| 国产精品亚洲综合一区在线观看 | 影音国产精品| 美女爽到呻吟久久久久| 91久久国产自产拍夜夜嗨| 免费在线亚洲| 亚洲国产一区二区三区高清| 欧美成人午夜激情视频| 亚洲三级影片| 欧美日韩在线免费观看| 亚洲影视在线播放| 国产精品一区二区黑丝| 欧美一区永久视频免费观看| 国内精品免费在线观看| 欧美aa在线视频| 中文日韩欧美| 国产一区二区三区av电影| 久久艳片www.17c.com| 亚洲精品婷婷|