99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH38161、代做R程序設計
代寫MATH38161、代做R程序設計

時間:2024-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                精品中文字幕一区二区小辣椒| 亚洲乱码中文字幕| 亚洲人午夜精品天堂一二香蕉| 成人av一区二区三区| 国产精品久久久久影院| 色999日韩国产欧美一区二区| 亚洲人吸女人奶水| 正在播放亚洲一区| 国产一区二区三区四区五区美女| 国产免费观看久久| 欧美少妇bbb| 国产露脸91国语对白| 亚洲免费成人av| 精品国产乱码久久| 色哟哟精品一区| 麻豆国产欧美日韩综合精品二区| 国产日韩v精品一区二区| 91在线观看下载| 日韩av在线免费观看不卡| 久久理论电影网| 欧美综合一区二区| 国产东北露脸精品视频| 天天影视网天天综合色在线播放| 国产片一区二区| 日韩一区二区三区四区五区六区| 欧美日韩视频一区二区| 成人网在线播放| 久久狠狠亚洲综合| 亚洲精品乱码久久久久久久久 | 7799精品视频| 不卡av电影在线播放| 蜜桃一区二区三区在线观看| 亚洲影院理伦片| 日韩理论片中文av| 久久精品欧美日韩精品 | 在线观看av一区| 国产成人在线免费观看| 免费成人在线网站| 午夜欧美在线一二页| 国产精品盗摄一区二区三区| 久久人人超碰精品| 欧美高清你懂得| 在线精品亚洲一区二区不卡| 国产a久久麻豆| 国精产品一区一区三区mba视频| 午夜久久久久久| 亚洲成人免费影院| 午夜精品一区二区三区电影天堂 | 91精品国产综合久久香蕉麻豆| 国产91精品一区二区| 国产精品一级在线| 激情图区综合网| 久久99久久99精品免视看婷婷 | 国产91在线观看丝袜| 九九精品一区二区| 国产一区二区影院| 国产高清成人在线| 91精品国产色综合久久不卡蜜臀 | 国产一区二区视频在线| 极品少妇一区二区三区精品视频 | 国产午夜精品久久| 欧美激情在线看| 欧美一区二区三区不卡| 精品国产乱码久久| 亚洲天堂a在线| 亚洲国产成人91porn| 蜜臀av国产精品久久久久| 黄网站免费久久| jlzzjlzz亚洲日本少妇| 色诱亚洲精品久久久久久| 91精品国产欧美日韩| 精品日韩成人av| 欧美激情一区在线| 亚洲精品日日夜夜| 麻豆一区二区三区| av男人天堂一区| 欧美精品在欧美一区二区少妇| 精品婷婷伊人一区三区三| 日韩精品一区在线观看| 国产精品理伦片| 日本欧美韩国一区三区| 成人黄色大片在线观看| 欧美日韩精品一区二区三区蜜桃| 精品伦理精品一区| 一区二区三区在线播放| 精品一区二区三区免费播放| 暴力调教一区二区三区| 制服丝袜成人动漫| 日韩美女视频一区二区| 久久成人免费网站| 欧美午夜寂寞影院| 中文字幕日韩一区| 黄色精品一二区| 精品视频1区2区| 久久久蜜桃精品| 天堂精品中文字幕在线| 成人av免费在线| 26uuu另类欧美| 丝袜美腿亚洲一区| 色视频一区二区| 中文字幕第一页久久| 麻豆国产精品一区二区三区 | 自拍偷拍亚洲欧美日韩| 蜜臀av性久久久久蜜臀aⅴ四虎 | 制服丝袜亚洲色图| 亚洲欧美一区二区久久| 激情欧美日韩一区二区| 91精品黄色片免费大全| 亚洲国产欧美日韩另类综合| 成人午夜在线视频| 精品剧情在线观看| 日日骚欧美日韩| 欧美在线视频全部完| 亚洲视频资源在线| 99久久伊人网影院| 亚洲欧洲性图库| 99精品久久只有精品| 综合久久久久久久| 国产91精品一区二区麻豆亚洲| 26uuu色噜噜精品一区| 精品无码三级在线观看视频| 日韩精品一区二区三区视频播放| 手机精品视频在线观看| 欧美精品vⅰdeose4hd| 亚洲福中文字幕伊人影院| 色婷婷av一区| 一区二区三区四区精品在线视频| 91热门视频在线观看| 亚洲美女偷拍久久| 欧美综合欧美视频| 一二三四区精品视频| 在线免费观看不卡av| 亚洲成av人片观看| 欧美日韩一区高清| 亚洲午夜电影在线观看| 欧美日韩日日摸| 亚洲成av人在线观看| 色婷婷激情一区二区三区| 一区二区三区四区蜜桃| 91黄视频在线| 亚洲综合精品自拍| 日韩亚洲电影在线| 日本vs亚洲vs韩国一区三区二区 | 亚洲免费观看高清在线观看| 色先锋资源久久综合| 一区二区三区**美女毛片| 欧美精品乱码久久久久久| 日韩av一二三| ww久久中文字幕| 成人精品免费看| 亚洲一区在线免费观看| 欧美日韩精品一区二区天天拍小说| 亚洲444eee在线观看| 欧美一区二区三区日韩视频| 国产一区二区三区在线看麻豆| 精品精品国产高清一毛片一天堂| 成人丝袜高跟foot| 亚洲一区二区三区自拍| 日韩精品一区二区三区视频在线观看| 蜜桃视频一区二区| 国产精品国产三级国产三级人妇| 色屁屁一区二区| 美日韩一区二区| 日韩美女一区二区三区| 91在线观看免费视频| 精品午夜久久福利影院| 亚洲另类一区二区| 欧美精品一区二区三区四区| 91电影在线观看| 国产又粗又猛又爽又黄91精品| 欧美激情综合五月色丁香小说| 色欧美日韩亚洲| 国产91精品露脸国语对白| 日韩一区精品视频| 《视频一区视频二区| 精品少妇一区二区三区日产乱码| 在线观看三级视频欧美| 国产精品一级在线| 麻豆91在线观看| 亚洲电影一级片| 日韩毛片视频在线看| 精品久久久久久久人人人人传媒 | 91国产福利在线| 激情综合网av| 老汉av免费一区二区三区| 亚洲综合色噜噜狠狠| 国产精品你懂的| 精品入口麻豆88视频| 日韩欧美在线网站| 欧美日韩色一区| 欧美日韩国产精选| 欧美日韩一二区| 中文字幕久久午夜不卡| 精品黑人一区二区三区久久| 亚洲123区在线观看| 国产精品欧美经典| 国产欧美一区二区精品久导航| 麻豆精品一区二区三区| 婷婷六月综合网| 午夜私人影院久久久久|