99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫MATH38161、代做R程序設(shè)計
代寫MATH38161、代做R程序設(shè)計

時間:2024-11-25  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設(shè)計編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                动漫精品一区二区三区| 久久精品美女视频| 99久久精品免费看国产交换| 亚洲天堂一区二区在线观看| 91高清免费看| 超碰在线公开97| 国产在线不卡av| 九九久久久久久| 青青草视频在线观看免费| 欧美精品久久久久久久久46p| 欧洲成人午夜精品无码区久久| 日韩一级片av| 一区二区三区在线播放视频| 亚洲一区二区三区日韩| 第一页在线视频| 久久精品无码人妻| 日本在线免费观看| 亚洲精品国产一区二区三区| 爆乳熟妇一区二区三区霸乳| 精品久久久久久久久久久久久久久久久久 | 国产99久久久久久免费看| 国产午夜在线播放| 欧美人妻精品一区二区免费看| 三叶草欧洲码在线| 亚洲久久中文字幕| 国产精品日日摸夜夜爽| 欧美偷拍第一页| 中文字幕丰满孑伦无码专区| 国产精品久久久毛片| 欧美视频一区二区在线| 亚洲狠狠婷婷综合久久久久图片| 国产精品久久久久久免费免熟| 欧美极品jizzhd欧美18| 亚洲丝袜在线观看| 久久国产精品影院| 在线精品视频播放| 国产毛片久久久久| 五月婷婷色丁香| 成人免费毛片糖心| 任你操精品视频| 国产欧美久久久| 久久久久亚洲av无码网站| 亚洲AV成人精品| 国产三级日本三级在线播放| 天堂网在线观看视频| 成人午夜视频一区二区播放| 日本三级一区二区三区| 91精品视频国产| 青青草激情视频| av黄色免费网站| 日韩成人在线免费视频| www.这里只有精品| 天堂中文在线看| 亚洲涩涩在线观看| 久久黄色小视频| 97人妻精品视频一区| 日本成人一级片| 国产精品第56页| 在线观看日韩一区二区| 久久精品无码一区二区三区毛片| 亚洲高清无码久久| 人妻91麻豆一区二区三区| 国产www在线| 中文字幕av不卡在线| 毛片毛片毛片毛片毛片毛片毛片毛片毛片| 亚洲乱码精品久久久久..| 欧美激情 一区| 国产精品天天干| 亚洲精品www久久久久久| 欧美 日韩 综合| 国产成人手机在线| 亚洲国产www| 三日本三级少妇三级99| 九九九视频在线观看| 第四色在线视频| 亚洲天堂手机在线| 午夜国产在线观看| 免费一级片在线观看| 国产女人18毛片水18精| 亚洲一级二级片| 亚洲av成人精品一区二区三区 | 久久激情免费视频| 粉嫩aⅴ一区二区三区| 中文字幕免费高清网站| 深夜福利视频网站| 男人天堂综合网| 国产无遮挡裸体免费视频| 91黑人精品一区二区三区| 亚洲 另类 春色 国产| 欧美一级大片免费看| 国语对白在线播放| 国产a级黄色片| 91精品视频免费在线观看| 中文字幕另类日韩欧美亚洲嫩草| 日本女人性视频| 欧美日韩国产一二三区| 精品少妇人妻av一区二区三区| 国产黄色高清视频| www.com国产| 97人妻人人揉人人躁人人| 亚洲国产综合网| 中文字幕一区二区在线视频 | 91精彩刺激对白露脸偷拍| 中文在线一区二区三区| 一区二区三区在线播放视频| 无码人妻aⅴ一区二区三区| 欧美色图亚洲视频| 欧美人一级淫片a免费播放| 久久久久久久久久久久久久免费看 | aaaaaa毛片| av2014天堂网| 成人乱码一区二区三区av| 成人免费毛片东京热| 国产盗摄x88av| 国产伦精品一区二区三区视频女| 国产免费美女视频| 国产一卡二卡在线| 久久精品视频18| 男人女人黄一级| 日韩黄色免费观看| 无码人妻丰满熟妇区五十路 | 欧美丰满熟妇bbbbbb| 蜜臀aⅴ国产精品久久久国产老师| 久草免费新视频| 你懂的国产在线| 色偷偷中文字幕| 在线观看日批视频| 亚洲一区二区影视| 成人h动漫精品一区二区下载 | 中文字幕5566| 26uuu国产| 国产精品久久影视| 好看的av在线| 日本一级黄色录像| 亚洲第一精品网站| 97精品人妻一区二区三区在线| 成人免费视频国产| 精品黑人一区二区三区| 欧美亚洲另类小说| 亚洲aⅴ在线观看| 一级日韩一级欧美| 国产一级性生活| 欧美成人aaaaⅴ片在线看| 呻吟揉丰满对白91乃国产区| 中文字幕有码无码人妻av蜜桃| 一级片一区二区三区| 激情五月婷婷久久| 天堂av在线网站| 99热这里只有精品66| 精品国产18久久久久久| 特级丰满少妇一级| 992tv人人草| 久久久久国产免费| 亚洲av无一区二区三区久久| 波多野结衣一区二区三区在线| 久久久精品人妻一区二区三区| 色哟哟网站在线观看| 一出一进一爽一粗一大视频| 精品久久在线观看| 无码人妻精品一区二区三区9厂| 亚洲中文一区二区三区| 久久精品国产av一区二区三区| 婷婷国产成人精品视频| av中文字幕第一页| 欧美图片第一页| 91麻豆成人精品国产| 欧美精品二区三区| 91插插插插插插| 欧美精品videos极品| 一本一道久久a久久综合蜜桃| 久久久99精品| 亚洲少妇第一页| 蜜桃视频污在线观看| 91n.com在线观看| 欧美熟妇激情一区二区三区| 91网址在线播放| 欧美国产日韩在线视频| 97香蕉碰碰人妻国产欧美| 人妻无码中文字幕免费视频蜜桃| 亚洲一区日韩精品| 日韩av影视大全| 国产精品国产高清国产| 亚洲AV成人无码网站天堂久久| 国产精品欧美性爱| 中文字幕av网站| 免费中文字幕在线| av电影在线播放| 天天综合天天添夜夜添狠狠添| 国产乱淫av片| 亚洲一级片网站| 秋霞视频一区二区| 国产免费黄色大片| 亚洲性猛交xxxx乱大交| 人人干在线观看| 国产亚洲第一页| av黄色在线播放| 在线免费观看国产精品| 人妻少妇偷人精品久久久任期| 国产 porn| 91精品国产色综合久久不8|