合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫Neural Networks for Image 編程
        代寫Neural Networks for Image 編程

        時間:2024-11-08  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        Lab 2: Neural Networks for Image 
        Classification
        Duration: 2 hours
        Tools:
        • Jupyter Notebook
        • IDE: PyCharm==2024.2.3 (or any IDE of your choice)
        • Python: 3.12
        • Libraries:
        o PyTorch==2.4.0
        o TorchVision==0.19.0
        o Matplotlib==3.9.2
        Learning Objectives:
        • Understand the basic architecture of a neural network.
        • Load and explore the CIFAR-10 dataset.
        • Implement and train a neural network, individualized by your QMUL ID.
        • Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
        by running predefined code.
        Lab Outline:
        In this lab, you will implement a simple neural network model to classify images from 
        the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
        unique configurations for each student.
        1. Task 1: Understanding the CIFAR-10 Dataset
        • The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
        classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
        • The dataset is divided into 50,000 training images and 10,000 testing images.
        • You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
        Step-by-step Instructions:
        1. Open the provided Jupyter Notebook.
        2. Load and explore the CIFAR-10 dataset using the following code:
        import torchvision.transforms as transforms
        import torchvision.datasets as datasets
        # Basic transformations for the CIFAR-10 dataset
        transform = transforms.Compose([transforms.ToTensor(), 
        transforms.Normalize((0.5,), (0.5,))])
        # Load the CIFAR-10 dataset
        dataset = datasets.CIFAR10(root='./data', train=True, 
        download=True, transform=transform)
        2. Task 2: Individualized Neural Network Implementation, Training, and Test
        You will implement a neural network model to classify images from the CIFAR-10 
        dataset. However, certain parts of the task will be individualized based on your QMUL 
        ID. Follow the instructions carefully to ensure your model’s configuration is unique.
        Step 1: Dataset Split Based on Your QMUL ID
        You will use the last digit of your QMUL ID to define the training-validation split:
        • If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
        • If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
        Code:
        from torch.utils.data import random_split
        # Set the student's last digit of the ID (replace with 
        your own last digit)
        last_digit_of_id = 7 # Example: Replace this with the 
        last digit of your QMUL ID
        # Define the split ratio based on QMUL ID
        split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
        # Split the dataset
        train_size = int(split_ratio * len(dataset))
        val_size = len(dataset) - train_size
        train_dataset, val_dataset = random_split(dataset, 
        [train_size, val_size])
        # DataLoaders
        from torch.utils.data import DataLoader
        batch_size = ** + last_digit_of_id # Batch size is ** + 
        last digit of your QMUL ID
        train_loader = DataLoader(train_dataset, 
        batch_size=batch_size, shuffle=True)
        val_loader = DataLoader(val_dataset, 
        batch_size=batch_size, shuffle=False)
        print(f"Training on {train_size} images, Validating on 
        {val_size} images.")
        Step 2: Predefined Neural Network Model
        You will use a predefined neural network architecture provided in the lab. The model’s 
        hyperparameters will be customized based on your QMUL ID.
        1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
        0.0001).
        2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
        epochs.
        Code:
        import torch
        import torch.optim as optim
        # Define the model
        model = torch.nn.Sequential(
         torch.nn.Flatten(),
         torch.nn.Linear(******3, 512),
         torch.nn.ReLU(),
         torch.nn.Linear(512, 10) # 10 output classes for 
        CIFAR-10
        )
        # Loss function and optimizer
        criterion = torch.nn.CrossEntropyLoss()
        # Learning rate based on QMUL ID
        learning_rate = 0.001 + (last_digit_of_id * 0.0001)
        optimizer = optim.Adam(model.parameters(), 
        lr=learning_rate)
        # Number of epochs based on QMUL ID
        num_epochs = 100 + last_digit_of_id
        print(f"Training for {num_epochs} epochs with learning 
        rate {learning_rate}.")
        Step 3: Model Training and Evaluation
        Use the provided training loop to train your model and evaluate it on the validation set. 
        Track the loss and accuracy during the training process.
        Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
        You may see a lower accuracy, especially for the validation accuracy, due to the lower 
        number of epochs or the used simple neural network model, etc. If you are interested, 
        you can find more advanced open-sourced codes to test and improve the performance. 
        In this case, it may require a long training time on the CPU-based device.
        Code:
        # Training loop
        train_losses = [] 
        train_accuracies = []
        val_accuracies = []
        for epoch in range(num_epochs):
         model.train()
         running_loss = 0.0
         correct = 0
         total = 0
         for inputs, labels in train_loader:
         optimizer.zero_grad()
         outputs = model(inputs)
         loss = criterion(outputs, labels)
         loss.backward()
         optimizer.step()
         
         running_loss += loss.item()
         _, predicted = torch.max(outputs, 1)
         total += labels.size(0)
         correct += (predicted == labels).sum().item()
         train_accuracy = 100 * correct / total
         print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
        {running_loss:.4f}, Training Accuracy: 
        {train_accuracy:.2f}%")
         
         # Validation step
         model.eval()
         correct = 0
         total = 0
         with torch.no_grad():
         for inputs, labels in val_loader:
         outputs = model(inputs)
         _, predicted = torch.max(outputs, 1)
         total += labels.size(0)
         correct += (predicted == labels).sum().item()
         
         val_accuracy = 100 * correct / total
         print(f"Validation Accuracy after Epoch {epoch + 1}: 
        {val_accuracy:.2f}%")
         train_losses.append(running_loss) 
         train_accuracies.append(train_accuracy)
         val_accuracies.append(val_accuracy)
        Task 3: Visualizing and Analyzing the Results
        Visualize the results of the training and validation process. Generate the following plots 
        using Matplotlib:
        • Training Loss vs. Epochs.
        • Training and Validation Accuracy vs. Epochs.
        Code for Visualization:
        import matplotlib.pyplot as plt
        # Plot Loss
        plt.figure()
        plt.plot(range(1, num_epochs + 1), train_losses, 
        label="Training Loss")
        plt.xlabel("Epochs")
        plt.ylabel("Loss")
        plt.title("Training Loss")
        plt.legend()
        plt.show()
        # Plot Accuracy
        plt.figure()
        plt.plot(range(1, num_epochs + 1), train_accuracies, 
        label="Training Accuracy")
        plt.plot(range(1, num_epochs + 1), val_accuracies, 
        label="Validation Accuracy")
        plt.xlabel("Epochs")
        plt.ylabel("Accuracy")
        plt.title("Training and Validation Accuracy")
        plt.legend()
        plt.show()
        Lab Report Submission and Marking Criteria
        After completing the lab, you need to submit a report that includes:
        1. Individualized Setup (20/100):
        o Clearly state the unique configurations used based on your QMUL ID, 
        including dataset split, number of epochs, learning rate, and batch size.
        2. Neural Network Architecture and Training (30/100):
        o Provide an explanation of the model architecture (i.e., the number of input 
        layer, hidden layer, and output layer, activation function) and training 
        procedure (i.e., the used optimizer).
        o Include the plots of training loss, training and validation accuracy.
        3. Results Analysis (30/100):
        o Provide analysis of the training and validation performance.
        o Reflect on whether the model is overfitting or underfitting based on the 
        provided results.
        4. Concept Verification (20/100):
        o Answer the provided questions below regarding machine learning 
        concepts.
        (1) What is overfitting issue? List TWO methods for addressing the overfitting 
        issue.
        (2) What is the role of loss function? List TWO representative loss functions.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





         

        掃一掃在手機打開當前頁
      1. 上一篇:CPSC 471代寫、代做Python語言程序
      2. 下一篇:代做INT2067、Python編程設(shè)計代寫
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)400(全國服務(wù)熱線)
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時服務(wù)熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設(shè)計

        主站蜘蛛池模板: 亚洲色偷精品一区二区三区| 中文字幕精品一区影音先锋| 色窝窝无码一区二区三区色欲| 亚洲熟女综合一区二区三区| 精品免费久久久久国产一区| 无码一区18禁3D| 人妻免费一区二区三区最新| 色系一区二区三区四区五区| 亚洲国产欧美国产综合一区| 在线中文字幕一区| 人妻无码第一区二区三区| 日本一区二区三区在线观看视频| 亚洲熟妇AV一区二区三区浪潮 | 亚洲乱码一区av春药高潮| 国产精品无码AV一区二区三区| 亚洲人AV永久一区二区三区久久| 国产aⅴ精品一区二区三区久久| 无码人妻aⅴ一区二区三区有奶水 人妻夜夜爽天天爽一区 | 美女视频一区三区网站在线观看| 美女啪啪一区二区三区| 久久99精品国产一区二区三区 | 国产小仙女视频一区二区三区| 精品无码一区二区三区爱欲| 久久久久人妻一区精品色| 亚洲AV无码一区二区乱孑伦AS | 精品无人区一区二区三区在线| 国产丝袜视频一区二区三区| 亚洲国产精品一区第二页 | 中文字幕久久亚洲一区| 精品aⅴ一区二区三区| 国产一区二区在线视频| 人妻AV一区二区三区精品| 极品人妻少妇一区二区三区| 亚洲日韩一区精品射精| 国产一区二区三区樱花动漫| 国产精品一区二区久久精品无码| 久久se精品一区精品二区国产| 亚洲av鲁丝一区二区三区| 偷拍激情视频一区二区三区| 午夜在线视频一区二区三区| 亚洲国产成人久久一区久久|