99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫Neural Networks for Image 編程
代寫Neural Networks for Image 編程

時間:2024-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Lab 2: Neural Networks for Image 
Classification
Duration: 2 hours
Tools:
• Jupyter Notebook
• IDE: PyCharm==2024.2.3 (or any IDE of your choice)
• Python: 3.12
• Libraries:
o PyTorch==2.4.0
o TorchVision==0.19.0
o Matplotlib==3.9.2
Learning Objectives:
• Understand the basic architecture of a neural network.
• Load and explore the CIFAR-10 dataset.
• Implement and train a neural network, individualized by your QMUL ID.
• Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
by running predefined code.
Lab Outline:
In this lab, you will implement a simple neural network model to classify images from 
the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
unique configurations for each student.
1. Task 1: Understanding the CIFAR-10 Dataset
• The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
• The dataset is divided into 50,000 training images and 10,000 testing images.
• You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
Step-by-step Instructions:
1. Open the provided Jupyter Notebook.
2. Load and explore the CIFAR-10 dataset using the following code:
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# Basic transformations for the CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor(), 
transforms.Normalize((0.5,), (0.5,))])
# Load the CIFAR-10 dataset
dataset = datasets.CIFAR10(root='./data', train=True, 
download=True, transform=transform)
2. Task 2: Individualized Neural Network Implementation, Training, and Test
You will implement a neural network model to classify images from the CIFAR-10 
dataset. However, certain parts of the task will be individualized based on your QMUL 
ID. Follow the instructions carefully to ensure your model’s configuration is unique.
Step 1: Dataset Split Based on Your QMUL ID
You will use the last digit of your QMUL ID to define the training-validation split:
• If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
• If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
Code:
from torch.utils.data import random_split
# Set the student's last digit of the ID (replace with 
your own last digit)
last_digit_of_id = 7 # Example: Replace this with the 
last digit of your QMUL ID
# Define the split ratio based on QMUL ID
split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
# Split the dataset
train_size = int(split_ratio * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, 
[train_size, val_size])
# DataLoaders
from torch.utils.data import DataLoader
batch_size = ** + last_digit_of_id # Batch size is ** + 
last digit of your QMUL ID
train_loader = DataLoader(train_dataset, 
batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, 
batch_size=batch_size, shuffle=False)
print(f"Training on {train_size} images, Validating on 
{val_size} images.")
Step 2: Predefined Neural Network Model
You will use a predefined neural network architecture provided in the lab. The model’s 
hyperparameters will be customized based on your QMUL ID.
1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
0.0001).
2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
epochs.
Code:
import torch
import torch.optim as optim
# Define the model
model = torch.nn.Sequential(
 torch.nn.Flatten(),
 torch.nn.Linear(******3, 512),
 torch.nn.ReLU(),
 torch.nn.Linear(512, 10) # 10 output classes for 
CIFAR-10
)
# Loss function and optimizer
criterion = torch.nn.CrossEntropyLoss()
# Learning rate based on QMUL ID
learning_rate = 0.001 + (last_digit_of_id * 0.0001)
optimizer = optim.Adam(model.parameters(), 
lr=learning_rate)
# Number of epochs based on QMUL ID
num_epochs = 100 + last_digit_of_id
print(f"Training for {num_epochs} epochs with learning 
rate {learning_rate}.")
Step 3: Model Training and Evaluation
Use the provided training loop to train your model and evaluate it on the validation set. 
Track the loss and accuracy during the training process.
Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
You may see a lower accuracy, especially for the validation accuracy, due to the lower 
number of epochs or the used simple neural network model, etc. If you are interested, 
you can find more advanced open-sourced codes to test and improve the performance. 
In this case, it may require a long training time on the CPU-based device.
Code:
# Training loop
train_losses = [] 
train_accuracies = []
val_accuracies = []
for epoch in range(num_epochs):
 model.train()
 running_loss = 0.0
 correct = 0
 total = 0
 for inputs, labels in train_loader:
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 
 running_loss += loss.item()
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 train_accuracy = 100 * correct / total
 print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
{running_loss:.4f}, Training Accuracy: 
{train_accuracy:.2f}%")
 
 # Validation step
 model.eval()
 correct = 0
 total = 0
 with torch.no_grad():
 for inputs, labels in val_loader:
 outputs = model(inputs)
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 
 val_accuracy = 100 * correct / total
 print(f"Validation Accuracy after Epoch {epoch + 1}: 
{val_accuracy:.2f}%")
 train_losses.append(running_loss) 
 train_accuracies.append(train_accuracy)
 val_accuracies.append(val_accuracy)
Task 3: Visualizing and Analyzing the Results
Visualize the results of the training and validation process. Generate the following plots 
using Matplotlib:
• Training Loss vs. Epochs.
• Training and Validation Accuracy vs. Epochs.
Code for Visualization:
import matplotlib.pyplot as plt
# Plot Loss
plt.figure()
plt.plot(range(1, num_epochs + 1), train_losses, 
label="Training Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Training Loss")
plt.legend()
plt.show()
# Plot Accuracy
plt.figure()
plt.plot(range(1, num_epochs + 1), train_accuracies, 
label="Training Accuracy")
plt.plot(range(1, num_epochs + 1), val_accuracies, 
label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.title("Training and Validation Accuracy")
plt.legend()
plt.show()
Lab Report Submission and Marking Criteria
After completing the lab, you need to submit a report that includes:
1. Individualized Setup (20/100):
o Clearly state the unique configurations used based on your QMUL ID, 
including dataset split, number of epochs, learning rate, and batch size.
2. Neural Network Architecture and Training (30/100):
o Provide an explanation of the model architecture (i.e., the number of input 
layer, hidden layer, and output layer, activation function) and training 
procedure (i.e., the used optimizer).
o Include the plots of training loss, training and validation accuracy.
3. Results Analysis (30/100):
o Provide analysis of the training and validation performance.
o Reflect on whether the model is overfitting or underfitting based on the 
provided results.
4. Concept Verification (20/100):
o Answer the provided questions below regarding machine learning 
concepts.
(1) What is overfitting issue? List TWO methods for addressing the overfitting 
issue.
(2) What is the role of loss function? List TWO representative loss functions.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:CPSC 471代寫、代做Python語言程序
  • 下一篇:代做INT2067、Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美日韩一区二区在线| 国产亚洲精品久久久久久| 亚洲免费观看在线观看| 欧美久久久久久| 亚洲欧美激情一区二区| 国产在线观看一区| 午夜日韩视频| 精品不卡在线| 国产精品久久999| 久久蜜桃精品| 亚洲一二三区在线| 狠狠综合久久av一区二区小说| 免费一级欧美在线大片| 夜夜嗨av色一区二区不卡| 国产亚洲观看| 欧美日韩久久| 麻豆精品在线视频| 亚洲欧美美女| 在线成人国产| 欧美午夜精品久久久久久人妖| 香蕉久久国产| 91久久国产综合久久91精品网站| 国产精品日日做人人爱| 欧美日韩一级大片网址| 快播亚洲色图| 亚洲婷婷综合色高清在线| 亚洲电影免费观看高清完整版在线观看| 国产精品久久国产精品99gif| 牛夜精品久久久久久久99黑人| 亚洲欧美日韩在线高清直播| 在线欧美不卡| 国产免费亚洲高清| 欧美日韩aaaaa| 欧美福利视频在线| 欧美成人资源网| 蜜桃av一区二区在线观看| 久久精品成人| 久久精品av麻豆的观看方式| 99精品免费网| 国产欧美日本| 欧美三日本三级少妇三99| 欧美福利影院| 欧美激情视频一区二区三区在线播放 | 亚洲国产美国国产综合一区二区| 国产一区二区欧美| 国产日韩在线亚洲字幕中文| 国产麻豆成人精品| 国产精品红桃| 国产精品日韩欧美一区二区三区| 美日韩精品视频免费看| 久久久久网址| 欧美福利一区二区| 欧美日韩另类丝袜其他| 欧美午夜宅男影院| 欧美亚洲第一区| 国产精品综合不卡av| 国产精品v亚洲精品v日韩精品| 久久久久久久久久久成人| 玖玖综合伊人| 欧美激情一区二区三区高清视频| 欧美大尺度在线| 国产精品高潮在线| 国产午夜精品一区理论片飘花| 国产一区二区三区四区hd| 伊人久久男人天堂| 亚洲黄网站黄| 亚洲在线播放| 久久九九精品99国产精品| 欧美大片专区| 国产精品日韩在线一区| 国产一区二区三区的电影| 亚洲第一精品在线| 日韩午夜av电影| 欧美一区二区三区电影在线观看| 亚洲女同精品视频| 榴莲视频成人在线观看| 欧美私人网站| 亚洲第一福利视频| 欧美亚洲三区| 欧美日韩免费一区| 好看不卡的中文字幕| 一区二区三区久久精品| 欧美在线啊v一区| 牛牛影视久久网| 国产中文一区| 一本色道婷婷久久欧美| 久久国产精品电影| 欧美日韩在线播| 亚洲日本无吗高清不卡| 亚洲专区在线视频| 欧美黄色影院| 在线观看日韩av电影| 亚洲制服少妇| 欧美日韩色综合| 91久久夜色精品国产九色| 亚洲欧美视频在线观看| 久久久九九九九| 欧美日韩在线综合| 亚洲人成网站999久久久综合| 香蕉久久夜色精品| 欧美三级视频在线播放| 亚洲黄页一区| 欧美v亚洲v综合ⅴ国产v| 国产一区在线观看视频| 午夜精品视频| 国产精品久久激情| 一区二区不卡在线视频 午夜欧美不卡在 | 欧美大片免费久久精品三p| 国产一区二区精品久久99| 亚洲黄色三级| 欧美激情偷拍| 亚洲乱码国产乱码精品精98午夜| 麻豆精品视频在线观看视频| 韩国女主播一区| 欧美一区二区三区免费视频| 国产精品任我爽爆在线播放| 中日韩高清电影网| 欧美日韩免费一区| 一本色道**综合亚洲精品蜜桃冫| 欧美精品成人一区二区在线观看| 国产无一区二区| 亚洲欧美日韩天堂| 欧美三日本三级少妇三2023 | 久久精品一二三| 国内久久精品视频| 欧美成人在线影院| 99人久久精品视频最新地址| 欧美图区在线视频| 午夜免费在线观看精品视频| 国产精品播放| 欧美一级视频精品观看| 国内精品视频在线播放| 欧美日韩在线视频观看| 亚洲欧美视频| 狠狠操狠狠色综合网| 久久久国际精品| 国产一区清纯| 欧美aⅴ99久久黑人专区| 99re在线精品| 国产综合色产在线精品| 蜜臀va亚洲va欧美va天堂| 亚洲毛片在线免费观看| 国产精品进线69影院| 久久久亚洲综合| 99精品热视频| 国产综合久久| 久久久久久亚洲精品杨幂换脸 | 亚洲一区二区三区精品动漫| 国产精品亚洲一区| 麻豆精品91| 亚洲精品一区在线观看| 国产精品一区二区在线观看不卡| 老司机午夜精品| 亚洲欧美激情视频在线观看一区二区三区| 一区二区三区在线观看欧美| 国产精品久久久久秋霞鲁丝| 欧美成人精品| 欧美影院午夜播放| 午夜久久一区| 亚洲免费中文| 亚洲欧美精品中文字幕在线| 夜夜爽av福利精品导航| 最新成人av在线| 亚洲欧洲日韩综合二区| 亚洲国产精品va在线看黑人动漫| 极品少妇一区二区三区| 国产在线观看91精品一区| 国产啪精品视频| 国产日韩一区在线| 国产最新精品精品你懂的| 国产欧美日韩精品一区| 国产欧美日韩另类视频免费观看| 国产精品免费网站| 国产亚洲欧美激情| 国产在线观看精品一区二区三区| 韩国亚洲精品| 亚洲国产精品久久久久秋霞不卡| 亚洲国产裸拍裸体视频在线观看乱了中文 | 怡红院精品视频在线观看极品| 韩日精品视频| 亚洲国产日日夜夜| aa级大片欧美三级| 亚洲欧美国产高清va在线播| 欧美在线视频在线播放完整版免费观看| 亚洲欧美日韩一区二区| 久久精品中文字幕免费mv| 欧美1级日本1级| 欧美亚男人的天堂| 国产一区二区电影在线观看| 伊人蜜桃色噜噜激情综合| 亚洲精品国精品久久99热| 99在线|亚洲一区二区| 亚洲伊人网站| 久久婷婷麻豆| 国产精品高潮呻吟视频| 国精产品99永久一区一区| 亚洲精选91| 欧美在线播放一区二区| 欧美了一区在线观看| 国产日韩欧美高清|