99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做IMSE7140、代寫Java/c++程序語言
代做IMSE7140、代寫Java/c++程序語言

時間:2024-11-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



IMSE7140 Assignment 2
Cracking CAPTCHAs
(20 points)
2.1 Brief Introduction
CAPTCHA or captcha is the acronym for “Completely Automated Public Turing test
to tell Computers and Humans Apart.” You must have been already familiar with it
because of its popularity in preventing bot attacks or spam everywhere. This assign ment, however, will guide you in implementing a deep learning model that can crack a
commercial-level captcha!
You deliverables for this assignment should include
1. A single PDF file answers.pdf with answers to all the questions explicitly marked
by “Q” with a serial number in this document, and
2. A train.py file to fulfill the programming task requirements marked by “PT.”
Of course, GPUs can facilitate your experiments—Don’t worry if you don’t have any,
the training requirement is deliberately simplified.
2.2 Training your model
The captchas we will crack is the multicolorcaptcha. Please pip install the exact version
1.2.0 (the current latest one) in case there might be any incompatibility for other releases.
We use the following codes to generate captchas.
1 from multicolorcaptcha import CaptchaGenerator
2
3 generator = CaptchaGenerator (0)
4 captcha = generator . gen_captcha_image ( difficult_level =0)
5 image = captcha . image
6 characters = captcha . characters
7 image . save ( f"{ characters }. png", "PNG")
In this snippet, CaptchaGenerator(0) configures the image size to 256 × 144 pixels,
and the difficult level is set to 0 so that the captchas only contains four 0–9 digits.
Please run the code snippet on your computer. If the captcha is successfully generated,
it should look like Figure 2.1.
1
2.2. Training your model S. Qin
Figure 2.1: Sample captcha with digits 0570
The training and the validation datasets are generated and attached in folders
capts train and capts val. For any machine learning problem, before you start to
devise a solution, it is always a good idea to observe the data and gain some intuition
first. You may immediately recognize some difficulties in this task:
• The digits have a set of random fonts and colors;
• Some certain range of random rotations are applied to the digits;
• Some line segments are randomly added to the image.
Such a task is considered impossible for traditional pattern recognition methods,
which may tackle the problem in a process like this: image thresholding, segmenta tion, handcrafted filter design, and pattern matching. We can conjecture that “filter
design” may fail in capturing useful features and “pattern matching” may have a poor
performance.
Fortunately, in the deep learning era, we can delegate the pattern or feature extrac tion job to deep neural networks. As introduced in the previous lecture “Deep Learning
for Computer Vision,” the slide “Understand feature maps: CAPTCHA recognition”
shows that a typical architecture for the task consists of two parts:
1. A backbone model to extract a feature map from the captcha image, and
2. A certain amount of prediction heads to interpret the feature map to readable
forms.
We will follow this architecture in this assignment. I encourage you to search open source solutions and learn from their experience. Here we follow this Kaggle post by
Ashadullah Shawon.
PT| Use capts train as the training dataset, capts val as the validation dataset, and Keras
as the deep learning framework, referring to Shawon’s solution, provide the training code
train.py that fulfills the following requirements. “Copy and paste” the codes from the
original post is allowed, as well as other AI-generated codes.
2
2.3. Example: A practical model S. Qin
1. The maximal number for epochs should be 10. Considering some students
will train the model by CPU, it is fair to limit the number of epochs, so the training
time for the model should be less than half an hour.
2. The accuracy for one digit should be no less than 30% after training for
10 epochs. The training outputs contain four accuracies respective to the four
digits. Since they are similar, you will only need to examine one of them. Keep in
mind that 30% for one digit indicates that the overall accuracy for the recognition
is only 0.3
4 = 0.81%. Such a low accuracy is not useful for cracking the captcha.
However, on the one hand, you may need a GPU to experiment on a practical
solution; on the other hand, a wild guess for a 0–9 digit has an accuracy of 10%,
so if your model’s accuracy can reach 30% after 10 epochs, it already indicates
the model learns from the training set. Hint: if the accuracy for one digit keeps
wandering around 0.1 but not increasing in the first two or three epochs, it is the
signal that you should modify somewhere in your code and try again.
3. The trained model should be saved as a file my model.keras after training.
Though, this model file my model.keras doesn’t need to be uploaded.
Q1| Can we convert the captcha images to grayscale at the preprocessing stage before train ing? What is the possible advantage by doing that? If any, can you point out the
possible disadvantage?
Q2| After the 10-epoch training, what are your accuracies of one digit, for the training and
the validation datasets respectively?
Q3| Is the accuracy for the validation dataset lower than that for the training dataset? What
are the possible reasons?
Q4| How can we improve the model’s performance on the validation dataset? List at least
three different measures.
2.3 Example: A practical model
To demonstrate that the backbone–heads architecture can actually solve the real-world
captcha, I trained a relatively large model by an Nvidia GeForce RTX 30** GPU.
You may find in attached the model file 099**0.9956.keras and the inference code
inference.py. The accuracies versus training epochs are shown in Figure 2.2. The
inference code reads a randomly generated captcha, inferences the model, and compares
the predicted results with the targets. You can press “n” for the next captcha or “q” to
quit the program. You may need to pip install keras cv to run the code.
Q5| What kind of backbone did I use in the model 099**0.9956.keras?
Q6| The backbone’s pre-trained weights on the ImageNet 2012 dataset were loaded before
training. What is the possible advantage by doing that?
Q7| Why didn’t I use any dropout in the model? Guess the reason.
Q8| In Figure 2.2, you may have noticed that the accuracies rise very fast from 0 to 0.9, but
significantly slow from 0.95 to 0.99. Explain the phenomenon.
Q9| Using the same hardware (which means you can’t upgrade the GPU, for example), how
can we speed up the learning process of the model, i.e. the rate of convergence?
3
2.3. Example: A practical model S. Qin
0 200 40**00 800 1000
Epoch
0.2
0.4
0.6
0.8
1.0
Model Accuracies
digi0
digi1
digi2
digi3
Figure 2.2: Accuracies through 1000 epochs in training
Q10| Since the accuracy for one digit is about 99%, the overall accuracy for a captcha is
0.994 ≈ 96%. This performance would be better than humans. Can you propose some
methods that can even further improve the performance?
Please note that, not all the questions above have a definite answer. You may also
need to do some research as the course doesn’t cover all the details in class. The source
code for training this model and the reference answers will be available on Moodle or
sent by email after all the students completing the submission.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:IS3240代做、代寫c/c++,Java程序語言
  • 下一篇:DATA 2100代寫、代做Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久久亚洲精品一区二区三区 | 国产精品盗摄久久久| 在线视频免费在线观看一区二区| 国产日韩免费| 欧美日韩激情网| 久久久久久婷| 亚洲欧美日韩精品在线| 亚洲精品偷拍| 亚洲国产精品成人精品| 国产区在线观看成人精品| 欧美日韩小视频| 欧美日韩国产成人在线观看| 久久国产欧美| 亚洲综合色视频| 亚洲一区二区影院| 亚洲精品国产欧美| 精品成人一区二区| 国产日韩专区| 国产日韩视频| 国产精品都在这里| 欧美日本网站| 欧美日韩综合不卡| 欧美三级乱码| 欧美久久久久久久久| 欧美精品1区| 欧美激情亚洲| 欧美激情视频网站| 欧美日韩国产免费观看| 欧美大片在线观看一区| 欧美国产一区视频在线观看| 久久亚洲私人国产精品va媚药| 欧美一级视频精品观看| 欧美在线播放一区| 久久九九国产| 久久不射2019中文字幕| 久久国产精品亚洲77777| 亚洲欧美国产视频| 欧美在线一二三区| 美女精品在线观看| 欧美88av| 欧美电影美腿模特1979在线看| 久久香蕉国产线看观看av| 久久亚洲二区| 欧美电影美腿模特1979在线看| 欧美高清视频免费观看| 欧美日韩视频一区二区三区| 国产精品国产三级国产aⅴ浪潮 | 最近中文字幕日韩精品| aa国产精品| 午夜精品短视频| 久久久久国产一区二区三区四区| 久久综合狠狠| 欧美三区在线视频| 国产欧美在线播放| 国产亚洲精久久久久久| 亚洲人精品午夜在线观看| 亚洲一区区二区| 久久综合九色综合网站| 欧美日韩精品欧美日韩精品一| 国产欧美日韩亚洲精品| 伊人蜜桃色噜噜激情综合| 日韩一级精品视频在线观看| 一区二区三区久久久| 亚洲欧美日韩在线不卡| 欧美福利视频在线观看| 国产精品亚洲综合久久| 亚洲韩国精品一区| 欧美亚洲三级| 欧美另类一区| 伊人成人网在线看| 亚洲男人第一网站| 久久一日本道色综合久久| 欧美激情视频一区二区三区免费| 国产欧美日韩中文字幕在线| 日韩一区二区精品视频| 久久久久久夜| 国产精品免费视频xxxx| 亚洲精品一区在线| 麻豆精品精华液| 红桃视频一区| 久久成人免费| 国产欧美精品xxxx另类| 一区二区三区欧美日韩| 久久久亚洲人| 国产日韩精品一区二区三区在线| 99re在线精品| 欧美精品一区二| 尤物精品国产第一福利三区| 欧美一区二视频在线免费观看| 欧美日韩视频在线一区二区观看视频 | 国产精品一区二区视频| 99av国产精品欲麻豆| 老司机精品导航| 国产一区二区三区四区在线观看| 中文在线不卡视频| 欧美理论电影在线观看| 中文精品99久久国产香蕉| 亚洲精品乱码久久久久久黑人| 午夜精品免费| 国产精品私房写真福利视频 | 亚洲小视频在线| 欧美日产国产成人免费图片| 亚洲激情欧美| 欧美国产视频在线| 一本色道久久综合亚洲精品不卡| 欧美aⅴ一区二区三区视频| 亚洲国产福利在线| 欧美激情亚洲国产| 国产精品99久久99久久久二8| 欧美日韩天堂| 欧美一级专区免费大片| 国产在线高清精品| 最新国产精品拍自在线播放| 性欧美videos另类喷潮| aa国产精品| 亚洲老板91色精品久久| 久久综合国产精品| 国产欧美三级| 美女脱光内衣内裤视频久久影院| 在线观看视频日韩| 欧美视频1区| 欧美在现视频| 亚洲免费激情| 国产欧美日韩91| 免费成人性网站| 日韩一区二区精品在线观看| 国产精品系列在线播放| 久久精品视频在线免费观看| 在线看国产一区| 欧美日韩第一区| 欧美亚洲尤物久久| 亚洲精品久久视频| 国产精品区一区二区三| 老司机精品久久| 亚洲精品视频啊美女在线直播| 国产精品尤物福利片在线观看| 免费成人高清在线视频| 在线亚洲一区观看| 亚洲国产美女| 国产日韩欧美高清免费| 欧美国产亚洲另类动漫| 欧美一区日韩一区| 夜夜夜久久久| 亚洲国产精品v| 国产日韩欧美制服另类| 欧美三级电影大全| 久久久www成人免费精品| 日韩视频中文| 在线日韩精品视频| 国产亚洲在线观看| 欧美三级欧美一级| 欧美激情日韩| 久久夜色精品| 亚洲一区不卡| 中日韩男男gay无套| 亚洲精品乱码久久久久久按摩观 | 国产精品自拍视频| 欧美日本在线观看| 欧美v国产在线一区二区三区| 欧美有码视频| 欧美在线观看网站| 欧美一区2区三区4区公司二百| 亚洲视频一区二区免费在线观看| 亚洲国产婷婷香蕉久久久久久| 狠狠爱综合网| 黄色精品一二区| 狠狠狠色丁香婷婷综合激情| 国产亚洲精品久久久久动| 国产精品综合网站| 国产精品推荐精品| 国产日韩欧美麻豆| 国模套图日韩精品一区二区| 国产欧美一区二区三区久久| 国产美女精品一区二区三区| 国产精品永久免费视频| 国产欧美日韩综合一区在线观看| 国产欧美亚洲精品| 国产在线精品成人一区二区三区 | 欧美怡红院视频| 久久国产精品黑丝| 麻豆成人在线观看| 欧美极品一区| 国产精品成人一区二区三区吃奶 | 国产精品毛片大码女人| 国产精品久久久久久久9999| 国产精品一区二区你懂的| 国产欧美日韩在线| 1000部精品久久久久久久久| 亚洲每日在线| 小黄鸭精品aⅴ导航网站入口| 久久精品视频一| 欧美成人免费视频| 国产精品video| 国产小视频国产精品| 在线观看亚洲a| 一区二区三区四区五区在线| 久久精品2019中文字幕| 欧美精品二区三区四区免费看视频| 欧美日韩免费高清| 国产婷婷色一区二区三区四区|