合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        MATH36031代做、代寫MATLAB程序語言
        MATH36031代做、代寫MATLAB程序語言

        時間:2024-10-18  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        MATH36031 Problem solving by computer.
        Project 1 - deadline 25th October 2024, time 1100hrs. Submission of the
        project is via Blackboard.
        Recurring decimals Consider the rational number x = p/q where p, q are positive
        integers, p < q and the integer q ends with the digit 9. It is known that the decimal
        expansion of x takes the form of a recurring decimal with
        x = 0.a1a2 . . . a↵ . . .
        where the ai are non-negative integers and ↵ is the smallest integer such that the sequence
        a1a2 . . . a↵ repeats. We define ↵ to be the period of the recurring fraction. The bar over
        the digits denotes the recurring sequence.
        For example with p = 1, q = 19
        x = 1
        19 = 0.05263157894**68421
        and
        a1 = 0, a2 = 5, . . . a18 = 1, with ↵ = 18.
        Task 1: Write a function RecFrac1 such that [k,a] = RecFrac1(p,q) returns the
        period k of the recurring fraction p/q and the variable a which contains the recurring digits
        a1, a2, . . . , ak, in the decimal expansion of p/q. Here the integers p, q are positive and the last
        digit of q is 9. In performing this task you need to use Algorithm 1 (mentioned below).
        The first few lines of your code should look like:
        function [k , a ] = RecFrac1 ( p,q )
        %% RecFrac1 uses Algorithm 1 and returns the recurring digits in the
        % decimal expansion of p /q , among all pairs of
        % positive integers (p , q ) such that p< q and the last digit of q is a 9.
        Task 2: Write a function RecFrac2 such that [k,a] = RecFrac2(p,q) returns the
        period k of the recurring fraction p/q and the variable a which contains the recurring digits
        a1, a2, . . . , ak, in the decimal expansion of p/q. Here the integers p, q are positive and the last
        digit of q is 9. In performing this task you need to use Algorithm 2 (mentioned below).
        The first few lines of your code should look like:
        function [k , a ] = RecFrac2 ( p,q )
        %% RecFrac2 uses Algorithm 2 and returns the recurring digits in the
        % decimal expansion of p /q , among all pairs of
        % positive integers (p , q ) such that p< q and the last digit of q is a 9.
        Task 3: Using the RecFrac functions defined in Task 1 or Task 2 find positive integers
        r, s with r < s <= 649, and with the last digit of s ending in a 9, such that that period of the
        recurring fraction r/s is largest. Display all the recurring digits. If there is more than one
        pair with the largest recurring digits, show the pair with the largest s value. If additionally
        1
         
        Etnssettfnnftftttnttnttttssostssetottatttgsnngtstannesssentatgngaasattangttftngtnsztsgtnaettssesototttotseoseattthere are multiple (r, s) values with the largest period and largest s, choose the pair with the
        largest r to display your answer and as part of the required output list all the (r, s) values
        in your report suitably formatted.
        Notes: (a) you can assume that p, q are positive integers. You will need to build in a
        check of the validity of the input, ie that the number q ends in a 9 and that p < q.
        (b) In computing the recurring digits you need to use both Algorithms 1 and 2 and
        you will need to give details of how the algorithms compute the recurring digits
        in your report. Detailed proofs are not expected.
        Note that a naive application of simple division will not work as the period of the recurring
        digits will in most cases be larger than the typical values computed via simple application
        of division in MATLAB.
        (c) One algorithm is described in the video clip labelled Algorithm 1 in the Projects
        folder in Blackboard for this module. Another algorithm using the ancient Vedic system of
        mathematics developed in India is explained in the video clip labelled Algorithm 2 in the
        Projects folder in Blackboard. Please study both algorithms and try them yourself on several
        examples by hand to see how they work. You will then need to formulate the algorithms to
        use for the project. You will of course have to explain the details in your report.
        Additional Information
        All coding must be done in MATLAB and you are required to submit your MATLAB
        functions and m (or mlx)-files via the Blackboard submission box. Project reports
        in pdf form only should be submitted via the Turnitin submission box. Remember
        the Turnitin software will automatically scan reports for plagiarism.
        Please ask if you need help on any commands, or whether there are built-in commands/functions
         to accomplish certain tasks (especially important if you think you have a
        good approach to the questions, but do not know the related commands).
        The default datatype is double (decimal number), and be aware of possible side e↵ects
        when using the numbers as integers. Remember that the same question can be solved
        by di↵erent approaches, and the same approach can be implemented in di↵erent ways.
        All relevant commands should be covered during the lectures or tutorial exercises,
        but you are free to explore your own. Make critical judgement to choose the best
        approach/implementation.
        Aim for emust be reproducible from your codes. Remember
        that markers will be able to run the codes in case of any doubts and any inconsistencies
        between reported results and actual results from running codes will lead to reports
        being marked down. You will be marked down if no codes are submitted.
        Guidelines for the report.
        1. Have a look at the generic rubric and frequently asked questions, which is given on
        Blackboard in the Projects folder and about how your report will be marked. The
        rubric also describes the intended learning outcomes about what you are expected to
        achieve at the end.
        2. Avoid copying (too many) sentences directly from the project description, and try to
        restate the problem with your own words or examples if possible.
        3. You may use your report in the future as evidences of written work, so take it seriously.
        4. Your target audience is a fellow student on your course: explain the questions so that
        the report can be understood without this project description and your approach can
        be implemented in another computer. The report should indicate to the reader how
        well you understand the problem and the approach you have taken, the validation and
        other checks that you made to ensure your results are credible. Reports submitted
        containing codes only and with no explanations of how the problem was solved, will
        result in a failing mark, even though the codes may work perfectly well and give the
        correct answers.
        5. Balance the explanation of the approach and the comments in the code. Avoid undercommenting
         and over-commenting.
        6. Aim for precision and clarity of writing (discussed in Week 5).
        7. Keep your page length not exceeding eight A4 pages, with a font size no smaller
        than 11, and page margins no smaller than 2cm. There is no need for a title page for
        a relative short report like this. If more than 8 pages are submitted only the
        first 8 pages will be marked and the rest of the submission will be ignored.
        8. Since there is no final exam, you are advised to spend at least 15 hours on each project.
        9. The submission box (via Blackboard and Turnitin) for each project will be open
        two weeks before the deadline, and you are encouraged to submit an early draft to
        see how Turnitin works on Blackboard. Only your last submission will be marked.
        Anything submitted after the deadline (except for those with approved extensions)
        will be subject to late penalties. Any late penalty will be applied by the Teaching and
        Learning Support O

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機打開當前頁
      1. 上一篇:代寫INFO1113、Java編程設計代做
      2. 下一篇:&#160;代寫MCEN30017、代做C++,Java程序
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 国产乱码精品一区二区三区中文 | 一区二区传媒有限公司| 99久久国产精品免费一区二区| 水蜜桃av无码一区二区| 国偷自产视频一区二区久| 国产一区二区三区韩国女主播| 一区 二区 三区 中文字幕| 精品国产一区二区三区AV| 人妻久久久一区二区三区| 精品少妇一区二区三区在线 | 一区二区三区四区在线视频| 99久久精品日本一区二区免费| 亚洲一区AV无码少妇电影☆| aⅴ一区二区三区无卡无码| 日本精品视频一区二区| 在线成人综合色一区| 少妇一夜三次一区二区| 亚洲精品色播一区二区| 亚洲国产系列一区二区三区| 精品一区高潮喷吹在线播放| 久久久精品人妻一区二区三区蜜桃 | 国产91精品一区| 国产一区二区免费在线| 国产人妖视频一区在线观看| 国产成人高清亚洲一区久久| 国模视频一区二区| 男人的天堂精品国产一区| 日韩精品一区二区三区视频| 亚洲国产成人精品久久久国产成人一区二区三区综 | 在线观看国产一区| 99精品高清视频一区二区| 亚洲线精品一区二区三区| 精品国产免费一区二区三区香蕉| 精品福利一区二区三| 国产乱码精品一区二区三区中| 国产乱码精品一区二区三区 | 国产熟女一区二区三区四区五区| 日韩人妻无码一区二区三区久久99| 国产一区二区三区不卡AV| 制服丝袜一区在线| 在线观看中文字幕一区|