99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CS 259、Java/c++設計程序代寫
代做CS 259、Java/c++設計程序代寫

時間:2024-10-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Fall 2024 
CS 259 Lab 1 
Accelerating Convolutional Neural Network (CNN) on FPGAs using 
Merlin Compiler 
Due October 9 11:59pm 
Description 
Your task is to accelerate the computation of two layers in a convolutional neural network 
(CNN) using a high-level synthesis (HLS) tool on an FPGA. We encourage you to start with 
using the Merlin Compiler. For an input image with 228 × 228 pixels and 256 channels, you 
are going to calculate the tensor after going through a 2D convolution layer and a 2D max 
pooling layer. The convolution layer has 256 filters of shape 256 × 5 × 5, uses the ReLU 
activation relu(x) = max{x, 0} with a bias value for each output channel. The 2D maxpooling
 layer operates on 2 × 2 non-overlapping windows. You will need to implement this 
function using HLS: 
void CnnKernel(const float* input, const float* weight, const float* bias, float* 
output) 
where input is the input image of size [256][228][228], weight stores the weights of the 
convolution filters of size [256][256][5][5], bias stores the offset values of size [256] that 
will be added to the output channels, and output should be written to by you as defined 
above to store the result of maxpool(relu(conv2d(input, weight) + bias)). The output 
size is [256][112][112]. 
How-To 
FPGA accelerator compilation typically involves three (3) stages: high-level synthesis (HLS), 
bitstream generation, and onboard execution. The last two stages can take days to 
complete. Therefore, in this lab, we only focus on the first stage: HLS. Your performance will 
only be assessed using the estimation in the HLS reports, which is usually accurate. 
However, you are welcome to try out the last two steps if you are interested. 
 
 
 
Connecting to the Server: Method 1 
In this method, you won’t be able to run Merlin directly from your /home directory, so you’ll need 
to copy files back and forth. 
1. Connect to the server (VPN may be required). You can find VPN details here: 
https://www.it.ucla.edu/it-support-center/services/virtual-private-network-vpn-clients  
ssh <username>@brimstone.cs.ucla.edu 
 
2. Start the Docker container and share your home with –v: 
 
docker run -v /d0/class/:/home -it vitis2021 /bin/bash 
 
3. Source Vitis, navigate to the desired directory and clone the repository: 
 
source /tools/Xilinx/Vitis_HLS/2021.1/settings64.sh 
cd /opt 
git clone https://github.com/UCLA-VAST/cs-259-f24.git 
cd cs-259-f24/lab1 
 
4. Copy the necessary file to your home directory: 
 
cp /opt/cs-259-f24/lab1/cnn-krnl.cpp /home/<username> 
Connecting to the Server: Method 2 
In this method, you can run Merlin directly from your /home directory, but make sure to export your 
home directory. 
 
1. Connect to the server (VPN may be required). You can find VPN details here: 
https://www.it.ucla.edu/it-support-center/services/virtual-private-network-vpn-clients 
 
ssh <username>@brimstone.cs.ucla.edu 
 
2. Start the Docker container and share your home with –v: 
 
docker run --user $(id -u):100 -v /d0/class/:/home -it vitis2021 /bin/bash 
 
3. Export your home directory: 
 
export HOME=/home/<username> 
 
4. Source Vitis, navigate to your home directory and clone the repository: 
 
source /tools/Xilinx/Vitis_HLS/2021.1/settings64.sh 
cd /home/<username> 
git clone https://github.com/UCLA-VAST/cs-259-f24.git 
cd cs-259-f24/lab1 
Build and Run Baseline with Software Simulation 
We have prepared the starter kit for you. Please run: make 
This command will perform a software simulation of the provided starter FPGA HLS kernel. It 
should show “PASS”. You need to use FPGA Developer AMI in this lab unless you are using 
a computer with Xilinx Vitis HLS installation. However, you are still suggested to develop code 
and run software simulation locally to test the correctness. You can move to AWS once you 
enter the tuning stage. 
Understand the automatic Merlin’s optimization 
Before modifying the kernel and adding pragmas, synthesize the CNN kernel with Merlin and 
describe in your report the automatic optimizations made by Merlin and how this reduces 
latency. 
Modify the HLS CNN Kernel 
If you have successfully built and run the baseline HLS CNN kernel, you can now optimize 
the code to design your CNN kernel. Your task is to implement a fast, parallel version of the 
CNN kernel on FPGA. You should start with the provided starter kit. You should edit cnnkrnl.cpp
for this task. When editing, please use the given types input_t, weight_t, bias_t, 
and output_t for the corresponding data, and compute_t for your intermediate values. 
You can use them as if they are float numbers. 
Parallelism should be exploited by using Merlin pragmas and tiling. You are encouraged to 
focus on Merlin pragmas (#pragma ACCEL parallel, #pragma ACCEL pipeline and #pragma 
ACCEL tile). You can explicitly modify the code (tiling, loop permutation, …) but make sure 
the code modified is correct. 
In the starter kit, we simply wrap a sequential CNN code with #pragma ACCEL kernel, and 
Merlin automatically performs data caching, memory coalescing, pipelining and 
parallelization, which yield about 10 GFLOPs. 
Although the skeleton kernel is provided, you are also free to create your own by removing 
the header file inclusion of “lib/cnn-krnl.h” and implement the basic kernel from scratch. 
However, this would require specific expertise in Xilinx FPGA architecture and is not 
recommended for this course. 
Test Your HLS CNN Kernel with Software Simulation 
To perform software emulation of your FPGA implementation of CNN kernel: 
make 
If you see something similar to the following message, your implementation is incorrect. 
Found 21201** errors 
FAIL Since the software simulation step uses the CPU to emulate the hardware behavior, it only 
serves as correctness test and its execution time doesn’t reflect that of actual hardware. Your 
estimated execution time should be retrieved using the command below: 
make estimate 
This command will print out the estimated latency and resource usage of your kernel: 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
| Kernel | Cycles | LUT | FF | BRAM | DSP | URAM |Detail| 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
|CnnKernel (cnn-krnl.cpp:12)|4179564052 (16718.256ms)|49558 (4%)|49381 (2%)|810 (18%)|202 (2%)|25 (2%)|- | 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
The time highlighted in yellow is the estimated execution time of your FPGA kernel. You can 
get the performance by “kNum*kNum*kImSize*kImSize*kKernel*kKernel*2/latency”, or 
164.4/latency (in s) to get the performance in GFLOPS. 
IMPORTANT: Please make sure that all your loops have fixed loop bounds. If any of the loop 
bounds are variable, a performance estimation will not be shown and you will receive no 
performance grade. 
IMPORTANT: The “make estimate” command should finish in 30 minutes, or in two hours 
with highly-complex optimizations. Our recommendation is to halt your estimation using 
Ctrl-C when the time exceeds 30 minutes, except for your last step (after you reach ~100 
GOPS). More than 12 hours in the estimation will result in zero for the performance score. 
As your kernel design becomes more complex, the software simulation and the estimation 
will start to take a significantly longer time. 
IMPORTANT: As you apply more optimizations, your resource usage will also increase. 
Ideally, you should keep applying optimization until your kernel occupies about 80% of these 
resources. The remaining 20% should be reserved for the interfaces (DRAM/PCI-e controller) 
and the downstream flows. Please make sure that resource utilization is less than 80% for all 
FPGA resources. If any of the resources are over this limit, you will receive no performance 
grade. 
IMPORTANT: You can check the HLS report by opening merlin.rpt with a text editor. This 
file will be generated with the command make estimate. You must submit this file with your 
final submission. You should not modify this file in your submission, and it will be all verified 
after submission due. Any modification to this file in your submission constitutes academic 
misconduct and will be reported. 
Advanced Tips for HLS 
Kernel Profiling: If you want to “profile” your kernel, you can open merlin.rpt with a text 
editor and scroll down to Performance Estimate. You can see the trip count, accumulated 
cycles and cycles per call, as well as pipeline initiation interval and parallel factor for each 
loop in the table. For resource usage, you can go to Resource Estimate. No loop level 
information is available, though. If you want to check the resource usage of a code region, 
you can wrap it with a function then run again. 
Kernel after transformation: If you want to see the kernel after being transformed by Merlin, 
you can look for that in .merlin_prj/run/implement/exec/hls/kernel. Annotation for Profiling: If you find the loops in your report hard to read, you can name the 
loops you are interested in using a goto label. For example, this_loop: for (int i = 0; 
i < n; i++); 
Debugging Pipelining: If you are not sure about why you cannot achieve a specific initiation 
interval as you expected, you can open the file below and read the logs. HLS usually gives out 
a reason. 
.merlin_prj/run/implement/exec/hls/_x/logs/CnnKernel/CnnKernel/vitis_hls.log 
Long Synthesis Time In Pipelining: You will experience long HLS synthesis time (for 
generating the estimation) if you pipeline a loop with a large loop body. Besides, please note 
that as all loops inside a pipeline will be unrolled, it may be automatically a large loop body. 
In this case, you may want to exchange the order of pipelining and unrolling and see if the time 
can get improved. 
Use Functions for Shorter Synthesis Time: If you experience long synthesis time, you may try 
wrapping some loops into a function and specify #pragma HLS inline off inside the 
function body. However, this may lead to inaccurate dependency analysis or memory port 
analysis and cause lower performance sometimes. There might be some workarounds, or 
not. For example, if you have access to A[k + i][j] inside the function, passing A + k to 
the function and accessing A’[i][j] can allow HLS to understand the array partitioning 
better than passing A. You need to do experiments. 
General Tips 
● When you develop on AWS, to resume a session in case you lose your connection, you 
can run screen after login. You can recover your session with screen -DRR. You should 
stop your AWS instance if you are going to come back and resume your work in a few 
hours or days. Your data will be preserved but you will be charged for the EBS storage 
for $0.10 per GB per month (with default settings). You should terminate your instance 
if you are not going to come back and resume your work. Data on the instance will be 
lost. 
● You are recommended to use private repositories provided by GitHub to backup your 
code. Never put your code in a public repo to avoid potential plagiarism. To check in 
your code to a private GitHub repo, create a repo first. 
git branch -m upstream 
git checkout -b main # skip these two lines if you are reusing the folder in Lab 1 
... // your modifications 
git add cnn-krnl.cpp merlin.rpt 
git commit -m "lab1: first version" # change commit message accordingly 
# please replace the URL with your own URL 
git remote add origin git@github.com:YourGitHubUserName/your-repo-name.git 
git push -u origin main 
● You are recommended to git add and git commit often so that you can keep track of 
the history and revert whenever necessary. 
● Make sure your code produces correct results! 
(Optional) Modify the HLS CNN Kernel using Vitis Pragmas 
You are encouraged to use mainly Merlin pragmas. If needed, you can use Vitis pragmas for 
finer-grained control and optimization. The list of pragmas in Vitis can be found here. You can simply write Vitis pragmas and Merlin pragmas in the same file (cnn-krnl.cpp), but note 
that, to apply an HLS pragma to a loop, you need to put the pragma inside the loop body 
instead of before it. 
Submission 
You need to report the estimated performance results of your FPGA-based implementation on 
a Xilinx Ultrascale+ VU9P FPGA (the FPGA we are using, specified in the makefile). Please 
express your performance in GFLOPS and the speedup compared with the starter-kit version. 
Your report should also include: 
● Please run the input C file through the Merlin Compiler, identify the code 
transformation and HLS pragmas that Merlin added, and discuss why. 
● Please explain the parallelization and optimization strategies you have applied for 
each loop in the CNN program (convolution, max pooling, etc) in this lab. Include the 
pragmas (if any) or code segments you have added to achieve your strategy. 
● Please incrementally evaluate each parallelization/optimization that you have applied 
and explain why it improves the performance. 
● Please report the FPGA resources (LUT/FF/DSP/BRAM) usages, in terms of resource 
count and percentage of the total. Which resource has been used most, in terms of 
percentage? 
● Optional: The challenges you faced, and how you overcame them. 
● (Bonus +5pts): Analyze your code and check if the DSP/BRAM resource usage 
matches your expectation. Only the adders, multipliers, and size of arrays need to be 
considered. Please attach related code segments to your report and show how you 
computed the expected number. Provide a discussion on possible reasons if they 
differ significantly. 
You also need to submit your optimized kernel code. Do not modify code in the lib directory. 
Please submit on Gradescope. Your final submission should contain and only contain these 
files individually: 
 ├ cnn-krnl.cpp 
 ├ merlin.rpt 
 └ lab**report.pdf 
File lab**report.pdf must be in PDF format. 
Grading Policy 
Your submission will only be graded if it complies with the formatting requirements. 
Missing reports/code or compilation errors will result in 0 for the corresponding 
category(ies). 
Correctness (40%) 
Please check the correctness using the command “make”. Performance (40%) 
Your performance will be evaluated based on the estimation report generated using the 
command “make estimate”. The performance point will be added only if you have the 
correct result, so please prioritize the correctness over performance. Your performance will 
be evaluated based on the ranges of throughput (GOPS). Ranges A+ and A++ will be defined 
after all the submissions are graded: 
● Range A++, better than Range A+ performance: 40 points + 20 points (bonus) 
● Range A+, better than Range A performance: 40 points + 10 points (bonus) 
● Range A GFLOPS [200, 280]: 40 points 
● Range B GFLOPS [120, 200): 30 points 
● Range C GFLOPS [60, 120): 20 points 
● Range D GFLOPS [30, 60): 10 points 
● Lower than range F [0, 30): 0 points 
 
Report (20%) 
Points may be deducted if your report misses any of the sections described above. 
Academic Integrity 
All work is to be done individually, and any sources of help are to be explicitly cited. You must 
not modify the HLS report merlin.rpt in your submission. Any instance of academic 
dishonesty will be promptly reported to the Office of the Dean of Students. Academic 
dishonesty includes, but is not limited to, cheating, fabrication, plagiarism, copying code from 
other students or from the internet, modifying the software-generated report, or facilitating 
academic misconduct. We’ll use automated software to identify similar sections between 
different student programming assignments, against previous students’ code, or against 
Internet sources. We’ll run HLS on all submissions and compare the reproduced HLS 
report with the submitted report. Students are not allowed to post the lab solutions on public 
websites (including GitHub). Please note that any version of your submission must be your 
own work and will be compared with sources for plagiarism detection. 
Late policy: Late submission will be accepted for 24 hours with a 10% penalty. No late 
submission will be accepted after that (you lost all points after the late submission time). 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp









 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE4016、Python設計編程代做
  • 下一篇:DDA3020代做、代寫Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美日韩黄色大片| 国产精品wwwwww| 欧美日韩另类字幕中文| 欧美激情亚洲综合一区| 欧美日韩亚洲一区二区三区四区 | 欧美大片在线观看一区二区| 欧美日本国产精品| 国产精品毛片a∨一区二区三区|国| 国产欧美69| 91久久久久久久久久久久久| 一区二区激情视频| 久久狠狠婷婷| 欧美精品一区二区高清在线观看| 国产精品视频一| 在线观看视频日韩| 亚洲在线视频一区| 美女视频黄a大片欧美| 欧美日韩亚洲系列| 国语自产精品视频在线看抢先版结局| 亚洲欧洲在线观看| 性欧美在线看片a免费观看| 久久嫩草精品久久久精品一| 国产精品a久久久久| 狠狠v欧美v日韩v亚洲ⅴ| 亚洲精选视频在线| 久久久精品国产免大香伊| 欧美色区777第一页| 伊人成人开心激情综合网| 亚洲午夜性刺激影院| 美女黄色成人网| 国产欧美日韩视频一区二区三区| 亚洲日本中文字幕免费在线不卡| 9久草视频在线视频精品| 久久精品国产一区二区三| 欧美日韩精品二区| 91久久综合| 久久久另类综合| 国产精品二区影院| 99精品视频一区| 欧美成年人视频网站| 国产亚洲精品久| 亚洲综合色激情五月| 欧美色综合网| 一区二区欧美亚洲| 欧美日韩国产限制| 亚洲美女毛片| 欧美精品一区在线发布| 亚洲第一区在线| 久久躁狠狠躁夜夜爽| 精品盗摄一区二区三区| 久久精品成人| 经典三级久久| 久久久久久久综合色一本| 国产一区清纯| 久久精品一本| 好吊视频一区二区三区四区| 午夜免费电影一区在线观看| 国产精品久久777777毛茸茸| 亚洲图片在线观看| 欧美视频在线播放| 99热免费精品| 欧美三级视频在线观看| 亚洲午夜国产成人av电影男同| 欧美色图五月天| 亚洲一区三区在线观看| 国产精品色婷婷久久58| 亚洲一区二区三区免费观看| 国产精品久久久亚洲一区| 亚洲欧美999| 国产一区二区久久久| 久久看片网站| 亚洲激情视频在线播放| 欧美日本不卡视频| 亚洲男女毛片无遮挡| 国产久一道中文一区| 久久久青草婷婷精品综合日韩| 在线免费观看日本一区| 欧美精品1区2区| 亚洲一级影院| 国产一区美女| 欧美日韩国语| 欧美亚洲网站| 亚洲国产三级在线| 国产精品红桃| 噜噜噜噜噜久久久久久91 | 国产日韩欧美成人| 久久综合五月天婷婷伊人| 亚洲毛片在线观看.| 国产精品久久久久久久第一福利| 久久爱91午夜羞羞| 亚洲精品在线一区二区| 国产视频在线观看一区二区三区| 免费日韩视频| 性xx色xx综合久久久xx| 91久久国产精品91久久性色| 欧美性生交xxxxx久久久| 久久综合狠狠综合久久激情| 99热精品在线观看| 激情五月综合色婷婷一区二区| 欧美日本中文| 美女黄网久久| 欧美在线观看视频一区二区三区| 亚洲精品一区二区三| 国产在线乱码一区二区三区| 欧美日韩精品三区| 免费成人黄色av| 香蕉久久a毛片| 一区二区三区黄色| 亚洲第一区中文99精品| 国产精品区二区三区日本| 欧美黑人在线观看| 久久人体大胆视频| 午夜视频一区二区| 一本久道综合久久精品| 亚洲国产精品尤物yw在线观看 | 国产尤物精品| 国产精品成人久久久久| 欧美激情一区二区三区 | 欧美成人精品| 欧美日韩国产精品成人| 久久成人免费日本黄色| 亚洲一区二区精品在线观看| 亚洲精品一二| 亚洲国产婷婷香蕉久久久久久99 | 欧美日韩在线大尺度| 欧美国产激情二区三区| 六月婷婷一区| 美女诱惑黄网站一区| 久久男人av资源网站| 久久久久国产精品一区三寸| 午夜精品久久久久久久99热浪潮 | 亚洲人成在线观看一区二区| 伊人精品在线| 亚洲国产欧美一区| 亚洲人妖在线| 亚洲精品乱码久久久久久按摩观| 亚洲国产精品久久久久秋霞蜜臀| 精品二区视频| 最新亚洲一区| 日韩亚洲不卡在线| 亚洲一区999| 欧美一区二区国产| 久久九九精品| 欧美不卡在线| 欧美日韩黄色大片| 国产精品亚洲综合天堂夜夜| 国产欧美日韩综合精品二区| 国产亚洲女人久久久久毛片| 激情懂色av一区av二区av| 在线成人中文字幕| 亚洲精品欧洲| 亚洲永久字幕| 久久久精品国产免大香伊| 老牛嫩草一区二区三区日本| 毛片av中文字幕一区二区| 欧美久久99| 国产精品推荐精品| 一区二区三区在线视频观看| 在线日本成人| 中文国产成人精品| 欧美一区二区三区另类| 久久视频免费观看| 欧美视频一区在线观看| 国产主播精品| 亚洲最快最全在线视频| 欧美一级在线视频| 欧美金8天国| 国产欧美精品在线播放| 亚洲三级影片| 午夜精品国产更新| 欧美激情导航| 国产视频在线观看一区二区三区| 亚洲国产精品一区二区三区| 亚洲一区二区三区激情| 久久久久久久久久久久久女国产乱| 欧美激情精品久久久| 国产精品一区毛片| 亚洲免费精彩视频| 久久高清国产| 国产精品久久久一本精品| 亚洲电影自拍| 久久国产手机看片| 欧美日韩一区二区在线播放| 在线观看一区欧美| 欧美一区二粉嫩精品国产一线天| 欧美精品成人91久久久久久久| 国产亚洲电影| 午夜精品久久久| 欧美日韩一级视频| 亚洲国产高清高潮精品美女| 欧美一区二区三区视频| 欧美视频网站| 99视频在线精品国自产拍免费观看| 久久久久www| 国产一区二区三区四区| 午夜精品久久久久久久久久久| 欧美日韩成人一区二区| 亚洲人被黑人高潮完整版| 久久免费视频在线| 在线观看国产精品淫|