合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做AM05 、SQL編程語言代寫
        代做AM05 、SQL編程語言代寫

        時間:2024-09-29  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



         AM05 Workshop 2 - Data acquisition from Spotify API
        Overview
        In this workshop, you will learn how to:
        Create a Spotify App Obtain the necessary credentials to access the Spotify API.
         Request an Access Token Authenticate your app to interact with the API.  Request Artist Data Fetch data for the UK's top 10 chart artists and their
        songs.
         Store Data in an SQL Database Design a simple database schema and insert the retrieved data.
        Prerequisites:
        Basic understanding of R programming.
        R and RStudio installed on your computer.
        Internet access.
        A Spotify account (free account is sufficient).
        No prior experience with APIs is required.
        Optional: An SQL database system installed (e.g., MySQL, SQLite).
         AM05 Workshop 2  Data acquisition from Spotify API 1

        Table of Contents
        Part 1 Setting Up Your Spotify Developer Account Step 1 Create a Spotify Account
        Step 2 Create a Spotify App
        Part 2 Authenticating and Obtaining an Access Token Step 1 Install Required R Packages
        Step 2 Set Up Authentication Credentials
        Step 3 Obtain an Access Token
        Part 3 Fetching Artist and Track Data
        Step 1 Identify the UK's Top 10 Chart Artists Step 2 Retrieve Artist Data
        Step 3 Retrieve Tracks for Each Artist
        Part 4 Designing and Populating the SQL Database Step 1 Define the Database Schema
        Step 2 Connect to the SQL Database from R Step 3 Create Tables in the Database
        Step 4 Insert Data into the Database Conclusion
        Appendix: Additional Resources
        Part 1: Setting Up Your Spotify Developer Account
        Step 1: Create a Free Spotify Account
        If you don't already have a Spotify account:
         Go to Spotify Sign Up.
         Follow the instructions to create a free account.
        Step 2: Create a Spotify App
         Navigate to the Spotify for Developers Dashboard.
        AM05 Workshop 2  Data acquisition from Spotify API 2
                             
         Log in with your Spotify account credentials.  Click on "Create an App".
        Provide an App Name and App Description (e.g., "AM05 workshop").
        Accept the Terms of Service and click "Create".
         Your app will be created, and you'll be redirected to the app's dashboard.
        Important:
        Client ID and Client Secret:
        On your app dashboard, you will see your Client ID.
        Click on "Show Client Secret" to view your Client Secret.
        Keep these credentials secure. Do not share them publicly or commit them to version control systems like GitHub.
        Part 2: Authenticating and Obtaining an Access Token
        To interact with the Spotify API, you need to authenticate your app and obtain an access token.
        Step 1: Set Up Authentication Credentials
        Create a file named .Renviron in your R project directory to store your credentials securely.
         In RStudio, go to File > New File > Text File.
         Add the following lines, replacing placeholders with your actual credentials:
         Save the file as .Renviron in your project directory.
        Note The .Renviron file is used by R to store environment variables securely.
        Step 2: Install Required R Packages
        Open R or RStudio on your computer. We'll use the httr and jsonlite packages for handling HTTP requests and parsing JSON data.
           SPOTIFY_CLIENT_ID='your_client_id_here'
        SPOTIFY_CLIENT_SECRET='your_client_secret_here'
           AM05 Workshop 2  Data acquisition from Spotify API 3

         install.packages("httr")
        install.packages("jsonlite")
        install.packages("tidyverse")  # For data manipulation
        Load the packages:
        Step 3: Obtain an Access Token
        Create a function to retrieve the access token.
         library(httr)
        library(jsonlite)
        library(tidyverse)
         get_spotify_access_token <- function() {
          client_id <- Sys.getenv("SPOTIFY_CLIENT_ID")
          client_secret <- Sys.getenv("SPOTIFY_CLIENT_SECRET")
          response <- POST(
            url = '<https://accounts.spotify.com/api/token>',
            accept_json(),
            authenticate(client_id, client_secret),
            body = list(grant_type = 'client_credentials'),
            encode = 'form'
        )
          if (response$status_code != 200) {
            stop("Failed to retrieve access token")
        }
          content <- content(response)
          return(content$access_token)
        }
        # Obtain the access token
        access_token <- get_spotify_access_token()
         AM05 Workshop 2  Data acquisition from Spotify API 4

        Part 3: Fetching Artist and Track Data Step 1: Identify the UK's Top 10 Chart Artists
        Since Spotify does not provide a direct API endpoint for charts, we'll manually list the UK's top 10 artists.
        For this exercise, you can use the current UK Top 10 chart from a reliable source (e.g., Official Charts, BBC Radio 1. For demonstration purposes, we'll use a sample list:
         top_artists <- c(
          "Ed Sheeran",
          "Dua Lipa",
          "Adele",
          "Stormzy",
          "Lewis Capaldi",
          "Calvin Harris",
          "Sam Smith",
          "Little Mix",
          "Harry Styles",
          "Rita Ora"
        )
        Step 2: Retrieve Artist Data
        Create a function to search for an artist and retrieve their Spotify ID.
         get_artist_id <- function(artist_name, access_token) {
          base_url <- '<https://api.spotify.com/v1/search>'
          response <- GET(
            url = base_url,
            query = list(q = artist_name, type = 'artist', limit =
        1),
            add_headers(Authorization = paste('Bearer', access_toke
        n)) )
          if (response$status_code != 200) {
        AM05 Workshop 2  Data acquisition from Spotify API 5

             stop("Failed to retrieve artist data")
          }
          content <- content(response)
          if (length(content$artists$items) == 0) {
            warning(paste("Artist not found:", artist_name))
            return(NA)
          }
          artist <- content$artists$items[[1]]
          # Return a list with artist details
          list(
            id = artist$id,
            name = artist$name,
            followers = artist$followers$total,
            genres = paste(artist$genres, collapse = ", "),
            popularity = artist$popularity,
            url = artist$external_urls$spotify
        ) }
        # Retrieve data for all top artists
        artist_data <- map_df(top_artists, ~ {
          Sys.sleep(1)  # To respect rate limits
          artist_info <- get_artist_id(.x, access_token)
          if (!is.na(artist_info$id)) {
            return(as_tibble(artist_info))
          } else {
            return(NULL)
          }
        })
        Explanation:
        We define get_artist_id to search for an artist and extract relevant
        information.
         AM05 Workshop 2  Data acquisition from Spotify API 6

        map_df from purrr (part of tidyverse ) applies the function to each artist in top_artists and combines the results into a data frame.
        We include Sys.sleep(1) to pause between requests and respect API rate limits.
        Step 3: Retrieve Tracks for Each Artist
        Create a function to get the top tracks for each artist.
              get_artist_top_tracks <- function(artist_id, access_token,
        market = "GB") {
          base_url <- paste0('<https://api.spotify.com/v1/artists/
        >', artist_id, '/top-tracks')
          response <- GET(
            url = base_url,
            query = list(market = market),
            add_headers(Authorization = paste('Bearer', access_toke
        n)) )
          if (response$status_code != 200) {
            stop("Failed to retrieve top tracks")
          }
          content <- content(response)
          tracks <- content$tracks
          track_list <- map_df(tracks, ~ {
            list(
              track_id = .x$id,
              track_name = .x$name,
              artist_id = artist_id,
              album_id = .x$album$id,
              album_name = .x$album$name,
              release_date = .x$album$release_date,
              popularity = .x$popularity,
              duration_ms = .x$duration_ms,
        AM05 Workshop 2  Data acquisition from Spotify API 7

               track_url = .x$external_urls$spotify
            )
        })
          return(track_list)
        }
        # Retrieve tracks for all artists
        track_data <- map_df(artist_data$id, ~ {
          Sys.sleep(1)  # To respect rate limits
          get_artist_top_tracks(.x, access_token)
        })
        Explanation:
        get_artist_top_tracks fetches the top tracks for a given artist.
        We use map_df to apply this function to each artist ID in artist_data .
        Part 4: Designing and Populating the SQL Database
        Step 1: Define the Database Schema
        We'll design a simple relational database with the following tables:  artists
        artist_id Primary Key) name
        followers
        genres
        popularity
        url  tracks
        track_id Primary Key) track_name
        artist_id Foreign Key)
            AM05 Workshop 2  Data acquisition from Spotify API 8

        album_id album_name release_date popularity duration_ms track_url
        Note We establish a relationship between artists and tracks via the artist_id . Step 2: Connect to the SQL Database from R
        For simplicity, we'll use SQLite, a lightweight, file-based database that doesn't require a server setup.
        Install and load the RSQLite package:
        Create a connection to an SQLite database file:
        Step 3: Create Tables in the Database Create the artists and tracks tables.
           install.packages("RSQLite")
        library(RSQLite)
         # Create or connect to the database file
        con <- dbConnect(SQLite(), dbname = "spotify_data.db")
         # Create 'artists' table
        dbExecute(con, "
          CREATE TABLE IF NOT EXISTS artists (
            artist_id TEXT PRIMARY KEY,
            name TEXT,
            followers INTEGER,
            genres TEXT,
            popularity INTEGER,
            url TEXT
        ) ")
        AM05 Workshop 2  Data acquisition from Spotify API 9

         # Create 'tracks' table
        dbExecute(con, "
          CREATE TABLE IF NOT EXISTS tracks (
            track_id TEXT PRIMARY KEY,
            track_name TEXT,
            artist_id TEXT,
            album_id TEXT,
            album_name TEXT,
            release_date TEXT,
            popularity INTEGER,
            duration_ms INTEGER,
            track_url TEXT,
            FOREIGN KEY (artist_id) REFERENCES artists (artist_id)
        ) ")
        Explanation:
        We use dbExecute to run SQL statements that modify the database structure. We define the data types for each column.
        Step 4: Insert Data into the Database Insert data into the artists table.
          # Insert artist data
        dbWriteTable(
          conn = con,
          name = "artists",
          value = artist_data,
          append = TRUE,
          row.names = FALSE
        )
        Insert data into the tracks table.
         # Insert track data
        dbWriteTable(
        AM05 Workshop 2  Data acquisition from Spotify API 10

           conn = con,
          name = "tracks",
          value = track_data,
          append = TRUE,
          row.names = FALSE
        )
        Verify the data insertion:
         # Query the artists table
        dbGetQuery(con, "SELECT * FROM artists")
        # Query the tracks table
        dbGetQuery(con, "SELECT * FROM tracks")
        After you're done, close the connection:
        Note: dbWriteTable automatically handles inserting data frames into the specified table.
        Conclusion
        Congratulations! You have successfully:
        Set up a Spotify Developer account and created an app. Authenticated and obtained an access token.
        Retrieved data for the UK's top 10 chart artists and their top tracks. Designed a simple relational database schema.
        Inserted the retrieved data into an SQL database using R.
        Bonus Step:
        Extend the schema to include additional data (e.g., album details, track
        features).
         dbDisconnect(con)
           AM05 Workshop 2  Data acquisition from Spotify API 11

        Appendix: Additional Resources Spotify Web API Documentation:
        https://developer.spotify.com/documentation/web-api/
        httr Package Documentation: https://cran.r- project.org/web/packages/httr/httr.pdf
        jsonlite Package Documentation: https://cran.r- project.org/web/packages/jsonlite/jsonlite.pdf
        RSQLite Package Documentation: https://cran.r- project.org/web/packages/RSQLite/RSQLite.pdf
        DBI Package Documentation: https://cran.r- project.org/web/packages/DBI/DBI.pdf
        Official Charts: https://www.officialcharts.com/ Important Notes:
        API Usage Compliance Ensure you comply with Spotify's Developer Terms of Service. Use the data responsibly and for educational purposes.
        Rate Limiting Be mindful of API rate limits. Avoid making excessive requests in a short period.
        Data Privacy Do not share personal or sensitive data. The data retrieved is publicly available information about artists and tracks.
        Security Keep your Client ID and Client Secret secure. Do not share them or include them in publicly accessible code repositories.
        Frequently Asked Questions
        Q1 I get an error saying "Failed to retrieve access token". What should I do?
        A Check that your Client ID and Client Secret are correctly set in the .Renviron file. Ensure there are no extra spaces or missing quotes.
        Q2 The artist_data or track_data data frames are empty. Why?
        A This could happen if the artist names are not found in the Spotify database. Ensure the artist names are correctly spelled. Also, check if the access token is valid.
                         AM05 Workshop 2  Data acquisition from Spotify API 12

        Q3 How can I view the data stored in the SQLite database?
        A You can use SQL queries within R using dbGetQuery . For example:
          # Get all artists
        artists <- dbGetQuery(con, "SELECT * FROM artists")
        # Get all tracks
        tracks <- dbGetQuery(con, "SELECT * FROM tracks")
        Alternatively, you can use a database browser tool like DB Browser for SQLite to view the database file.
        Q4 Can I use a different SQL database system?
        A Yes. You can use other databases like MySQL or PostgreSQL. You'll need to install the appropriate R packages ( RMySQL , RPostgres ) and adjust the connection parameters accordingly.
        Additional Exercises
        To deepen your understanding, consider the following exercises:
         Data Analysis Use SQL queries to find the most popular track among the top artists.
         Data Visualization Create plots showing the popularity distribution of tracks or the number of followers per artist.
         Extended Data Retrieval:
        Fetch additional data such as album details or audio features of tracks. Update the database schema to accommodate the new data.
         Error Handling:
        Improve the robustness of your functions by adding more
        comprehensive error handling and logging.
              AM05 Workshop 2  Data acquisition from Spotify API 13

        AM05 Workshop 2  Data acquisition from Spotify API 14




        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp












         

        掃一掃在手機打開當前頁
      1. 上一篇:代寫COMP90049、代做Java/python程序設計
      2. 下一篇:ACST2001代寫、代做Python/c++設計編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
      4. 幣安app官網下載 短信驗證碼 丁香花影院

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 国产精品久久久久久一区二区三区 | 国产成人一区二区在线不卡| 无码乱人伦一区二区亚洲一| 中文字幕无码免费久久9一区9| 日本一区午夜艳熟免费| 中文字幕一区二区三| 日本不卡在线一区二区三区视频| 91久久精品午夜一区二区| 亚洲A∨精品一区二区三区下载| 国产裸体舞一区二区三区| 奇米精品一区二区三区在| 精品无码一区二区三区爱欲九九| 无码人妻久久一区二区三区免费丨| 日韩一区二区三区电影在线观看| 中文字幕亚洲一区二区三区| 精品无码一区二区三区爱欲九九| 婷婷亚洲综合一区二区| 国产午夜精品一区理论片| 无码人妻一区二区三区兔费| 无码人妻一区二区三区精品视频| 狠狠综合久久AV一区二区三区| 中文字幕av日韩精品一区二区| 一区免费在线观看| 精品无码国产一区二区三区AV| 国产精品一区二区香蕉| 精品亚洲一区二区| 日韩高清一区二区三区不卡| 国产自产V一区二区三区C| 爆乳无码AV一区二区三区| 国产精品无码AV一区二区三区| 国产在线不卡一区| 国产精品自拍一区| 99精品国产一区二区三区| 无码人妻精品一区二区三区久久久 | 无码夜色一区二区三区| 亚洲人成人一区二区三区| 色综合久久一区二区三区| 久久91精品国产一区二区| 日韩电影在线观看第一区| 学生妹亚洲一区二区| 久久免费区一区二区三波多野|