合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫AI6012程序、代做Java/c++編程
        代寫AI6012程序、代做Java/c++編程

        時(shí)間:2024-09-26  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        AI6012: Machine Learning Methodologies &
        Applications Assignment (25 points)
        Important notes: to ffnish this assignment, you are allowed to look up textbooks or
        search materials via Google for reference. NO plagiarism from classmates is allowed.
        The submission deadline is by 11:59 pm, Sept. 30, 2022. The ffle to be submitted
        is a single PDF (no source codes are required to be submitted). Multiple submission
        attempts are allowed, and the last one will be graded. A submission link is available
        under “Assignments” of the course website in NTULearn.
        Question 1 (10 marks): Consider a multi-class classiffcation problem of C classes.
        Based on the parametric forms of the conditional probabilities of each class introduced
        on the 39th Page (“Extension to Multiple Classes”) of the lecture notes of L4, derive
        the learning procedure of regularized logistic regression for multi-class classiffcation
        problems.
        Hint: deffne a loss function by borrowing an idea from binary classiffcation, and
        derive the gradient descent rules to update {w(c)}’s.
        Question 2 (5 marks): This is a hands-on exercise to use the SVC API of scikitlearn
        1
        to
         train a SVM with the linear kernel and the rbf kernel, respectively, on a binary
        classiffcation dataset. The details of instructions are described as follows.
        1. Download the a9a dataset from the LIBSVM Dataset page.
        This is a preprocessed dataset of the Adult dataset in the UCI Irvine Machine
        Learning Repository
        2
        , which consists of a training set (available here) and a test
        set (available here).
        Each ffle (the train set or the test set) is a text format in which each line represents
        a labeled data instance as follows:
        label index1:value1 index2:value2 ...
        where “label” denotes the class label of each instance, “indexT” denotes the
        T-th feature, and valueT denotes the value of the T-th feature of the instance.
        1Read Pages 63-64 of the lecture notes of L5 for reference
        2The details of the original Adult dataset can be found here.
        1This is a sparse format, where only non-zero feature values are stored for each
        instance. For example, suppose given a data set, where each data instance has 5
        dimensions (features). If a data instance whose label is “+1” and the input data
        instance vector is [2 0 2.5 4.3 0], then it is presented in a line as
        +1 1:2 3:2.5 4:4.3
        Hint: sciki-learn provides an API (“sklearn.datasets.load svmlight ffle”) to load
        such a sparse data format. Detailed information is available here.
        2. Regarding the linear kernel, show 3-fold cross-validation results in terms of classiffcation
         accuracy on the training set with different values of the parameter C in
        {0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table. Note that for all the
        other parameters, you can simply use the default values or specify the speciffc
        values you used in your submitted PDF ffle.
        Table 1: The 3-fold cross-validation results of varying values of C in SVC with linear
        kernel on the a9a training set (in accuracy).
        C = 0.01 C = 0.05 C = 0.1 C = 0.5 C = 1
        ? ? ? ? ?
        3. Regarding the rbf kernel, show 3-fold cross-validation results in terms of classiffcation
         accuracy on the training set with different values of the parameter gamma
        (i.e., σ
        2 on the lecture notes) in {0.01, 0.05, 0.1, 0.5, 1} and different values of
        the parameter C in {0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table.
        Note that for all the other parameters, you can simply use the default values or
        specify the speciffc values you used in your submitted PDF ffle.
        Table 2: The 3-fold cross-validation results of varying values of gamma and C in SVC
        with rbf kernel on the a9a training set (in accuracy).
        Hint: there are no speciffc APIs that integrates cross-validation into SVMs in
        sciki-learn. However, you can use some APIs under the category “Model Selection
        → Model validation” to implement it. Some examples can be found here.
        4. Based on the results shown in Tables **2, determine the best kernel and the best
        parameter setting. Use the best kernel with the best parameter setting to train a
        SVM using the whole training set and make predictions on test set to generate
        the following table:
        2Table 3: Test results of SVC on the a9a test set (in accuracy).
        Specify which kernel with what parameter setting
        Accuracy of SVMs ?
        Question 3 (5 marks): The optimization problem of linear soft-margin SVMs can
        be re-formulated as an instance of empirical structural risk minimization (refer to Page
        37 on L5 notes). Show how to reformulate it. Hint: search reference about the hinge
        loss.
        Question 4 (5 marks): Using the kernel trick introduced in L5 to extend the regularized
        linear regression model (L3) to solve nonlinear regression problems. Derive a
        closed-form solution (i.e., to derive a kernelized version of the closed-form solution on
        Page 50 of L3).


        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






         

        掃一掃在手機(jī)打開當(dāng)前頁(yè)
      1. 上一篇:公認(rèn)口碑最好的十個(gè)莆田微商,選擇這10個(gè)微商沒(méi)錯(cuò)的
      2. 下一篇:COMPSCI 315代做、代寫Python/Java語(yǔ)言編程
      3. 無(wú)相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線)
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
      4. 幣安app官網(wǎng)下載 短信驗(yàn)證碼 丁香花影院

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        主站蜘蛛池模板: 韩国福利一区二区三区高清视频| 午夜性色一区二区三区免费不卡视频| 无码日韩人妻AV一区免费l| 在线观看一区二区精品视频| 亚洲av无码一区二区三区在线播放| 无码毛片视频一区二区本码| 久久精品成人一区二区三区| 日韩久久精品一区二区三区 | 国产精品视频无圣光一区| 国产一区二区三区美女| 无码人妻久久一区二区三区免费 | 在线观看免费视频一区| 精品国产AV无码一区二区三区| 国产产一区二区三区久久毛片国语 | 国产福利一区视频| 中文字幕在线观看一区二区三区| 精品日产一区二区三区手机| 日韩一区二区三区精品| 亚洲丰满熟女一区二区哦| 日本一区二区在线免费观看| 亚洲AV本道一区二区三区四区| 国产伦精品一区二区三区免费迷| 久夜色精品国产一区二区三区| 亚洲午夜精品一区二区公牛电影院 | AV天堂午夜精品一区| 亚欧免费视频一区二区三区| 国产一区二区三区久久| 成人精品一区二区激情| 亚洲高清一区二区三区 | 亚洲av乱码一区二区三区按摩| 国产精品免费综合一区视频| 国产午夜福利精品一区二区三区| 无码8090精品久久一区| 91视频一区二区| 国模丽丽啪啪一区二区| 欧美一区内射最近更新| 日韩一区二区电影| 精品女同一区二区三区免费播放 | 国精产品999一区二区三区有限| 熟女少妇丰满一区二区| 美女视频黄a视频全免费网站一区|