99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

FIT3158編程代寫、代做Java/c++程序語言
FIT3158編程代寫、代做Java/c++程序語言

時間:2024-09-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Monash University Faculty of Information Technology 2nd Semester 2024 
 
FIT3158 Business Decision Modelling 
 
Assignment 2: Linear Programming, Integer Linear Programming, Network Analysis, 
Transportation, Transshipment and Economic Order Quantity (EOQ) - using Microsoft Excel 
Solver 
 
This assignment is worth 24% of your final mark (subject to the hurdles described in the 
FIT3158 Unit Guide and links therein). Among other things (see below), note the need to hit 
the `Submit’ button (and the possible requirement of a video and/or an interview). 
 
Due Date: Monday 30th September 2024, 11:55 pm 
Method of submission: Your submission should consist of 2 files: 
1. A Microsoft Excel spreadsheet named as: 
FamilyName-StudentId-2ndSem2024FIT3158Asst2.xlsx 
2. A text-based .pdf file named as: FamilyName-StudentId-2ndSem2024FIT3158Asst2.pdf 
Both the files must be uploaded on the FIT3158 Moodle site by the due date and time. 
The text-based .pdf file will undergo a similarity check by Turnitin at the time you submit 
to Moodle. Please read submission instructions here and elsewhere carefully regarding 
the use of Moodle. 
 
Total available marks = 50 + 34 + 16 = 100 marks. 
 
Note 1: Please recall the Academic Integrity rules (and, as per Moodle week 0, you might 
also wish to confer with https://www.monash.edu/student-academic-success). This is an 
individual assignment. Recall various resources from FIT3158 Moodle week 0. 
In submitting this assignment, you acknowledge both that you are familiar with the relevant 
policies, rules and regulations regarding Academic Integrity (including, e.g., doing your own 
work, not sharing your work, not using ChatGPT in particular, not using generative AI at all) 
and also that you are familiar with the consequences of being deemed to be in contravention 
of these policies. 
 
Note 2: And a reminder not to post even part of a proposed partial solution to a forum or 
other public location. This includes when you are seeking clarification of a question. 
If you seek clarification on an Assignment question then – bearing in mind the above – word 
your question very carefully and see the `Welcome to FIT3158’ Ed Discussion forum post 
(bearing in mind instructions in week 1 Introductory Lecture). If you are seeking to 
understand a concept better, then (please see the Welcome post in Ed Discussion, and) try to 
word your question so that it is a long way removed from the Assignment (which, in turn, 
makes it easier to answer – and probably also able to be answered by more people). You are 
reminded that Monash University takes academic integrity very seriously. 
 
Note 3: As previously advised, it is your responsibility to be familiar with the special 
consideration policies and special consideration process – as well as academic integrity. 
Please see the relevant links within FIT3158 Moodle (week 0 and perhaps also elsewhere). 
Students should be familiar with the special consideration policies and the process for 
applying. 
  
 
Note 4: As a general rule, don’t just give a number or an answer like `Yes’ or `No’ without 
at least some clear and sufficient explanation - or, otherwise, you risk being awarded 0 
marks for the relevant exercise. Make it easy for the person/people marking your work to 
follow your reasoning. Your .pdf should typically cross-reference the corresponding 
answer in your spreadsheet. For each and every question, sub-question and exercise, 
provide a clearly labelled separate spreadsheet tab with clear content, accompanied with 
clearly cross-referenced clear .pdf explanation. Without clear cross-reference between .pdf 
and spreadsheet tab – and without a separate spreadsheet tab for each sub-question - 
there is the possibility that any such exercise will be awarded 0 marks. 
Your .pdf file should not be generated from LaTeX (and/or Overleaf), nor OpenOffice, nor 
LibreOffice. 
Note 4b (and this is part of Note 4) : Re-iterating a point above, for each and every question, 
sub-question and exercise, clearly explain your answer and clearly show any working. 
 
Note 5: As a general rule, if there is an elegant way of answering a question without 
unnecessarily re-running the Solver, try to do it that way. (Recall, e.g., sensitivity report and 
some notions from Week 3 and thereabouts.) More generally, more elegant solutions are 
preferable - and will at least sometimes be given more marks (possibly many more marks, 
and the inelegant way might possibly get very few marks). Among other things, if a problem 
is a linear programming (LP) problem, then it would be more elegant to solve it using the 
linear simplex model. In a similar vein, a linking constraint (where appropriate) will be far 
preferable to a seemingly equivalent use of the IF() function. 
 
Note 6: You should include a screenshot of the relevant spreadsheet tab in your .pdf file. 
Apart from this, all of your submitted work should be in machine readable form, and none of 
your submitted work should be hand-written. 
 
Note 7: If you wish for your work to be marked and not to accrue (possibly considerable) 
late penalties, then make sure to upload the correct files and (not to leave your files 
as Draft). You then need to determine whether you have all files uploaded and that you are 
ready to hit `Submit’. Once you hit `Submit’, you give consent for us to begin marking your 
work. If you hit `Submit’ without all files uploaded then you will probably be deemed not to 
have followed the instructions from the Notes above. If you leave your work as Draft and 
have not hit `Submit’ then we have not received it, and it can accrue late penalties once the 
deadline passes. In short, make sure to hit ‘Submit’ at the appropriate time to make sure that 
your work is submitted. Late penalties will be as per Monash University Faculty of IT and 
Monash University policies. Within the requirements of these policies just mentioned, late 
penalties will accrue (in line with policy) at a rate of at least 5% per calendar day – where 5% 
refers to a proportion of the total marks available. It is possible that any work submitted at 
least 10 calendar days after the deadline might be automatically given a mark of 0. 
 
Note 8: The notation 1E-12 corresponds to 1 x 10
-12
, or 0.000000000001. A similar comment 
applies to 1E-14. If you see a figure of approximately this magnitude or comparable 
magnitude, then consider whether or not it might be round-off error for something else. 
 Unless otherwise stated, numbers should be stated to at least 3 significant figures, and 
numbers less than 10 in magnitude should be stated to at least 3 decimal places. 
 Note 9: Save your file(s) regularly. Most of the time, we expect that the Solver will run 
quickly. But for problems with many variables and many constraints – especially involving 
integers – please be mindful that if you are not careful to do some of the things mentioned in 
class to help your program finish more quickly, then there is a risk that your program might 
possibly go through at least tens or hundreds of thousands of subproblems and become very 
slow (as you wait and wait and …). If you save your file before starting a run that could be 
long and slow, then you can safely stop the program – if it becomes very slow – with reduced 
risk of losing your edit changes. 
 
Note 10: As a general rule for solving a problem using MicroSoft Excel Solver, please 
consider carefully whether the various solver (settings or) Options (which you might 
be able to access after clicking on `Options’, which might be on the right about twothirds
of the way down after you click on `Solver’) might affect the results provided 
by the solver. (As an example, if dealing with integers then give some thought to `Integer 
Optimality’.) Put another way, rather than just use the default settings, make sure to check 
the solver settings and be willing to appropriately modify them if and as required. 
 
The optimisations to follow throughout Assignment 2 (Questions 1, 2 and 3) could 
(variously) include such considerations as (including but not limited to) (e.g.) limiting 
pollution, saving time, reducing waste, making the most of limited resources, improving 
organ donor and recipient compatibility, etc. It could involve work with the United Nations 
(UN) and/or the International Space Station (ISS). Any transportation, transshipment and/or 
shortest path problems could possibly pertain to emergency vehicles (e.g., ambulance, fire, 
police) and to Search and Rescue (e.g., drones) – or simply cars and trucks. 
 
Question 1 (5 + 4 + 4 + 4 + 6 + 5 + 6 + 5 + 5 + 6 = 50 marks) 
 
Throughout Question 1 and the entire Assignment 2, follow the given notes (near the top – 
e.g., Note 4, Note 5, Note 6, etc.) and other instructions. 

 
Consider now Figure 1 immediately below but with the modifications stated just below it.  
We make some changes. First, the edge JI now has cost 20. We also add another node (or 
vertex), K. We also add three edges – namely, HK (cost 45), JK (cost 70) and IK (cost 45). 
This describes the network which we analyse at least for the start of Question 1. 
 
Before starting the exercises in Question 1, please remember that it is the modified version of 
Figure 1 (with modifications stated immediately above) that should be used at least to start 
the question. 
 
Unless stated otherwise, throughout Question 1 we use the modified version of Figure 1. 
 
Stated edge costs are the costs of moving one vehicle – e.g., moving 2 vehicles along an edge 
with stated cost 64 would cost 128. 

1a) We wish to move 70 vehicles from A to K. 
What is the shortest total cost, and what is the flow along the individual edges? 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Also explain whether or not the problem is a linear programming (LP) problem or not - and 
why or why not. 
(If the problem can be presented as an LP problem then it should be done that way.) 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 
1b) We wish to move 100 vehicles from B to I. 
What is the shortest total cost, and what is the flow along the individual edges? 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 
 1c) We wish to move 70 vehicles from A to I. 
What is the shortest total cost, and what is the flow along the individual edges? 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Also explain whether or not the problem is a linear programming (LP) problem or not - and 
why or why not. 
(If the problem can be presented as an LP problem then it should be done that way.) 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 
1d) We wish to move 100 vehicles from B to K. 
What is the shortest total cost, and what is the flow along the individual edges? 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed.  
 
1e) We re-visit the problem from 1d). However, we make some changes. 
The edges HK and IK (which had cost of 45 in parts 1a-1d) are now both modified as 
follows. For flow up to 75 (i.e., < 75), these edges still cost 45 per unit. But for flows above 
75, the excess flow costs 80 per unit. So, as an example, if HK has a flow of ** then that 
costs 45 * 75 + 80 * (** – 75) = 45 * 75 + 80 * 15 = 3375 + 1200 = 4575 for the flow on that 
edge. 
 
What is the shortest total cost, and what is the flow along the individual edges? 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 
1f) We re-visit the problem from 1d) and 1e). However, we make some changes. 
The edges HK and IK (which had cost of 45 in parts 1a-1d) are now both modified as 
follows. For flow up to 75 (i.e., < 75), these edges still cost 45 per unit. But for flows above 
75, the excess flow now costs 110 per unit. So, as an example, if HK has a flow of ** then 
that costs 45 * 75 + 110 * (** – 75) = 45 * 75 + 110 * 15 = 3375 + 1650 = 5025 for the flow 
on that edge. 
 
What is the shortest total cost, and what is the flow along the individual edges? 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 1g) Following on from 1f, we include the additional constraint that at most 4 edges have 
positive non-zero flow. 
 
What is the shortest total cost, and what is the flow along the individual edges? 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 
1h) Combining 1a and 1b (in some sense), we now have 70 vehicles at A and 100 cars at B. 
We are required to supply 70 vehicles to K and 100 vehicles to I. 
 
What is the shortest total cost, and what is the flow along the individual edges? 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 
For the earlier parts of the question, we have assumed that there was just one type of vehicle. 
So, those (sub-)questions could be done whether everything was a car or everything was a 
truck. 
For the remainder of the question, we now assume that there is more than one type of vehicle 
(e.g., ambulance, fire truck, police car, other truck, other car). If someone has demand for an 
ambulance then they want an ambulance and they might have no need for a fire truck. 
 
For simplicity, we might just assume that there are just two different types of vehicle – car 
and truck. For the avoidance of doubt, we want the correct number of cars to go from 
source/supply to demand/destination/sink, and we also want the correct number of trucks to 
go from source to sink. Put in other words, if a demand node seeks 2 cars and 1 truck but 
instead gets 1 car and 2 trucks then that is not a correct answer. 
 
 
1i) Combining 1a, 1b, 1c and 1d (in some sense), we now have two types of vehicles (cars 
and trucks). The cars can be thought of as in 1h. More specifically, we have 70 cars at A and 
100 cars at B. We are required to supply 70 cars to K and 100 cars to I. However, we also 
have 70 trucks at A and 100 trucks at B. We are required to supply 100 trucks to K and 70 
trucks to I. 
 
What is the shortest total cost, and what is the flow (both cars and trucks) along the individual 
edges? 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 1j) This is the same as 1i, but with the additional constraint that no edge can carry more than 
100 vehicles. So, whether it’s (e.g.) 100 cars or (e.g.) 100 trucks or (e.g.) 27 cars and ** 
trucks, etc., no edge can carry more than 100 vehicles. 
 
What is the shortest total cost, and what is the flow (both cars and trucks) along the individual 
edges? 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 
Question 2 (6 + 6 + 6 + 6 + 6 + 4 = 34 marks) 
 
Throughout Question 2 and the entire Assignment 2, follow the given notes (near the top – 
e.g., Note 4, Note 5, Note 6, etc.) and other instructions. 
 
There are 8 (agents or) workers to be potentially assigned to 12 possible (tasks or) jobs. 
 
The workers put in their first 4 preferences (P1, P2, P3, P4). 
For each worker that gets their 1st preference, there is a score of 10. 
For each worker that gets their 2nd preference, there is a score of 6. 
For each worker that gets their 3rd preference, there is a score of 3. 
For each worker that gets their 4th preference, there is a score of 1. 
No additional scores are given when a worker gets their 5th, 6th, 7th, … and/or 12th preference. 
 
The preferences (P1, P2, P3, P4) for each person (a, b, c, d, e, f, g, h) are given below:  
 
2a) Each of the eight workers is to be assigned to at most 1 job each. 
No job can be done by more than one worker. 
What is the maximum score that can be obtained, and what is the assignment of workers to 
jobs? 
 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 2b) We modify 2a so that each of the eight workers can be assigned to at most 4 jobs each. 
 
No job can be done by more than one worker. 
What is the maximum score that can be obtained, and what is the assignment of workers to 
jobs? 
 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 
2c) We modify 2b so that no more than 6 of the 8 workers can be used. 
 
As before, each of these six workers can be assigned to at most 4 jobs each. 
 
No job can be done by more than one worker. 
What is the maximum score that can be obtained, and what is the assignment of workers to 
jobs? 
 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 
2d) We modify 2a and 2b so that all 8 workers can be used but each of these eight workers 
can be assigned to at most 2 jobs each. 
 
No job can be done by more than one worker. 
What is the maximum score that can be obtained, and what is the assignment of workers to 
jobs? 
 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 
 2e) We now modify 2d so that at most one (but not both) of worker a and worker b can do a 
task. If either worker a does at least one task or worker b does at least one task, then the 
other of these two workers can not do any tasks. Put another way, if worker a does at least 
one task then worker b does no task, and if worker b does at least one task then worker a does 
no task. 
Apart from this, all 8 workers can be used but each of these eight workers can be assigned to 
at most 2 jobs each. 
 
No job can be done by more than one worker. 
What is the maximum score that can be obtained, and what is the assignment of workers to 
jobs? 
 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 
2f) We modify 2d so that at most 6 workers can be used, and each of these six workers can 
be assigned to at most 2 jobs each. 
 
No job can be done by more than one worker. 
What is the maximum score that can be obtained, and what is the assignment of workers to 
jobs? 
 
Express all variables, the objective function, all constraints, working and solution (values of 
decision variables, value of objective function). 
Further to Note 4 and Note 6, (here and elsewhere) please place your working and solutions 
as instructed. 
 
Question 3 (5 + 5 + 4 + 2 = 16 marks) 
 
This question concerns variants of the Economic Order Quantity (EOQ) model. 
 
Throughout Question 3 and the entire Assignment 2, follow the given notes (near the top – 
e.g., Note 4, Note 5, Note 6, etc.) and other instructions. 
 
Consider a monthly demand of 2000, a monthly holding cost of 0.02 = 2%, a cost per unit of 
100 Malaysian ringgits (MYR) and an ordering cost of 500 MYR. 
Assume no quantity discounts and no back-order penalty. 
 
 3a) Calculate the economic order quantity (EOQ) value, Q*. 
 
Show your calculations in your .pdf file. 
There might be more than one way to do it in your spreadsheet tab. 
Whatever you do, show working and solution values (any decision variable or decision 
variables, any optimised objective function). 
 
3b) We re-visit Qu 3a but with a back-order penalty of p = MYR 102.** per annum. 
 
Calculate Q*, S* and the maximum amount by which we would be out of stock before 
replenishing with new stock. 
 
Also state the minimum cost. 
 
Show your calculations in your .pdf file. 
Also show your calculations in your spreadsheet tab. 
Show working and solution values (any decision variable or decision variables, any optimised 
objective function). 
 
3c) We re-visit Qu 3a with discount for bulk orders. 
For an order of 1200 or more, there is a bulk discount of 19.5%. 
 
Calculate the optimal Q* and the minimum cost. 
 
Show your calculations in your .pdf file. 
Also show your calculations in your spreadsheet tab. 
Show working and solution values (any decision variable or decision variables, any optimised 
objective function). 
 
3d) Which is cheaper – the value from Qu 3b or the value from Qu 3c? 
 
Adjust the back-order penalty p from Qu 3b until the answers to 3b and 3c agree. 
 
What is the new value of p? 
 
Did you have to increase or decrease p - and, if you had to change p, then by how much? 
 
Recall notes and other instructions at the start of the Assignment and throughout the 
Assignment – and in the Ed Discussion `Welcome to FIT3158’ post - and follow these. 
 
END OF FIT3158 ASSIGNMENT 2 (Monash University, 2nd semester 2024) 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:CRICOS編程代做、代寫Java程序設計
  • 下一篇:代寫4CM508、代做C++,Python編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          国产欧美午夜| 欧美va天堂va视频va在线| 国产精品青草综合久久久久99 | 亚洲欧美一区二区在线观看| 国产亚洲美州欧州综合国| 欧美另类99xxxxx| 久久精品中文字幕免费mv| 一本大道久久a久久综合婷婷| 国产亚洲欧美一区| 欧美日韩91| 欧美ab在线视频| 国产精品日日摸夜夜添夜夜av| 亚洲一区亚洲| 亚洲国产精品99久久久久久久久| 欧美午夜免费电影| 欧美日本韩国一区| 欧美www视频| 久久久久久久久久久久久久一区 | 国产三级欧美三级| 国产精品色婷婷久久58| 欧美日韩亚洲高清一区二区| 男女视频一区二区| 噜噜噜噜噜久久久久久91| 久久精品国产一区二区三区免费看| 一二三区精品福利视频| 日韩一区二区久久| 夜夜嗨av一区二区三区四季av| 国产欧美另类| 国产农村妇女精品一区二区| 国产精品久久久久免费a∨ | 欧美精品免费看| 欧美成人免费在线| 欧美激情小视频| 欧美日韩福利在线观看| 欧美日韩精品不卡| 国产精品久久久久久久久久久久| 国产精品v片在线观看不卡| 欧美视频一二三区| 国产精品综合视频| 加勒比av一区二区| 最新国产成人在线观看| 一区二区三区四区五区精品视频 | 欧美视频专区一二在线观看| 欧美性猛交99久久久久99按摩| 欧美体内she精视频| 国产精品视频免费在线观看| 国产一区二区三区直播精品电影 | 噜噜噜91成人网| 欧美精品www| 国产人成一区二区三区影院| 国产亚洲欧美一区二区| 亚洲国产精品欧美一二99| 亚洲美女黄网| 久久aⅴ国产欧美74aaa| 久久综合久久久久88| 欧美日韩精品是欧美日韩精品| 国产精品久久久久999| 国内精品国产成人| 日韩午夜免费视频| 欧美一区二区三区四区视频| 农夫在线精品视频免费观看| 国产精品久99| 亚洲欧洲精品天堂一级| 亚洲欧美日韩在线综合| 欧美激情亚洲另类| 国产真实乱子伦精品视频| 亚洲人成啪啪网站| 久久精品电影| 欧美日韩综合不卡| 一区二区亚洲精品国产| 亚洲综合清纯丝袜自拍| 免费影视亚洲| 国产自产精品| 亚洲女女做受ⅹxx高潮| 欧美a级在线| 国产日韩欧美电影在线观看| 夜夜嗨av一区二区三区四季av| 久久夜色精品国产亚洲aⅴ| 国产精品久久久久久久久借妻| 亚洲国产欧洲综合997久久| 欧美制服丝袜第一页| 国产美女一区| 亚洲一区视频| 欧美天天视频| 在线视频日本亚洲性| 欧美成人中文字幕| 在线免费观看成人网| 久久久久久久久久久久久久一区| 国产精品入口福利| 亚洲一区二区三区高清| 国产精品青草久久久久福利99| 一区二区三区欧美成人| 欧美人体xx| 亚洲天堂免费观看| 欧美日韩国产综合视频在线| 夜夜夜精品看看| 欧美午夜电影在线| 亚洲一区一卡| 国产一区二区三区久久悠悠色av| 欧美亚洲一级| 极品尤物av久久免费看| 久久艳片www.17c.com| 在线看日韩av| 欧美成人亚洲| 日韩视频一区二区| 国产精品扒开腿做爽爽爽视频| 亚洲视频免费观看| 国产精品主播| 久久久天天操| 亚洲乱码国产乱码精品精天堂| 欧美成人三级在线| 一区二区三区精品视频在线观看| 国产精品国产三级国产aⅴ9色| 亚洲综合不卡| 国内精品久久久| 欧美黑人多人双交| 亚洲亚洲精品三区日韩精品在线视频| 国产精品久久国产精品99gif| 亚洲欧美视频| 亚洲国产导航| 国产精品久久久久一区二区| 久久久久国产精品厨房| 亚洲精品之草原avav久久| 欧美三级精品| 久久综合影视| 亚洲午夜免费福利视频| 在线观看91精品国产入口| 欧美色中文字幕| 久久久久久综合| 一区二区欧美在线| 依依成人综合视频| 国产精品国产三级国产专播品爱网 | 欧美日韩在线播| 久久一区二区三区av| 日韩亚洲在线观看| 国语自产精品视频在线看8查询8| 欧美日韩国产首页| 老**午夜毛片一区二区三区| 亚洲伊人一本大道中文字幕| 亚洲国产成人porn| 国产日韩精品在线观看| 欧美日韩亚洲91| 欧美jizz19性欧美| 久久精品99国产精品| 亚洲系列中文字幕| 日韩亚洲欧美成人| 在线成人黄色| 国产午夜精品福利| 国产精品swag| 欧美男人的天堂| 免费看精品久久片| 久久久久久夜| 久久福利精品| 欧美有码在线观看视频| 亚洲影院免费观看| 中文国产亚洲喷潮| 99国产麻豆精品| 亚洲全黄一级网站| 亚洲三级电影在线观看| 亚洲国产成人精品久久| 在线精品观看| 伊人狠狠色丁香综合尤物| 国产亚洲精品综合一区91| 国产欧美精品久久| 国产精品国产三级国产a| 欧美日韩一区二区三区在线看 | 欧美精品一区二区视频| 欧美成人日韩| 欧美区视频在线观看| 免费日韩成人| 欧美精品一区二区三区高清aⅴ| 欧美不卡视频一区| 欧美激情精品久久久六区热门| 欧美91视频| 欧美日韩国产成人在线| 国产精品扒开腿做爽爽爽软件 | 国产精品亚洲激情| 国产日韩精品久久久| 国产日韩在线亚洲字幕中文| 国内精品国语自产拍在线观看| 国产一区二区三区av电影| 雨宫琴音一区二区在线| 亚洲黄色在线视频| 一区二区三区色| 亚洲欧美日韩在线| 久久久久久97三级| 欧美激情视频在线播放| 欧美日韩一区二区三区| 国产婷婷成人久久av免费高清| 国产日韩亚洲欧美综合| 悠悠资源网亚洲青| 亚洲视频在线播放| 久久精品一区二区三区不卡| 亚洲欧美日韩爽爽影院| 亚洲欧美日韩另类精品一区二区三区 | 欧美日韩美女一区二区| 国产精品美女999| 亚洲成人在线网站| 亚洲在线播放| 欧美a级片一区|