合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        COMP4620代做、代寫Java/Python程序語言

        時間:2024-08-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        COMP4620/8620: Advanced Topics in ML – Intelligent Robotics

        Semester-22024–Assignment1

        Duedate: Monday,26August202410.00amCanberratime

        Graceperiod: 5hoursaftertheduedate

        Latesubmission: Notpermitted

        Pleasereadthefollowingnotesfirstbeforestartingtoworkontheassignment.

        1. Thisisanindividualassignment.

        2. Themaximumtotalmarkforthisassignmentis100points

        3. This assignment consists of two parts: Part A and Part B. Part A contains conceptual questions

        only. The maximum total mark for Part A is 30 points. Part B contains conceptual questions,

        programmingandanalysis. ThemaximumtotalmarkforPartBis70points.

        4. SubmissionInstruction:

        (a) Youcanwriteyourprograminaprogramminglanguageofyourchoice.

        (b) You must submit all of your source codes. If your program consists of multiple files,

        you must place all files under a single folder, compress the folder into a single file with

        one of the following extensions: .zip or .7z or .tar.gz, and submit this compressed file. If

        your program consists of multiple files in multiple folders, your compressed file should

        preservethefolderstructure.

        (c) In your selection of programming language and in compressing the files, you must con-

        sider that during the demo, you will need to download your submission, extract your

        source codes, compile (if needed), and run the program in front of the tutor marking your

        assignmentwithoutmakinganychangestothesourcecode.

        (d) Allnon-programmingpartsoftheassignmentmustbewritteninasingle.pdffile.

        (e) Thetwofiles(sourcecodesand.pdf)mustbesubmittedviawattlebeforetheduedate.

        (f) Late submission is NOT permitted. However, we provide a 5 hours grace period. Within

        the grace period, you can still submit your assignment. However, after the grace period

        ends,youwillNOTbeabletosubmityourassignment.

        5. Informationaboutthein-persondemowillbeannouncedintheclassforum.

        PARTA

        The questions in this part aim to explore the relation between

        distanceintheC-spaceandintheworkspace.

        To achieve the above objective, consider a planar kinematic

        chain robot as illustrated in Figure 1. It has a static base, K ro-

        tational joints and K links. Each joint is represented as a point.

        Each link is a straight line segment with length L. It has two

        end-points, called the origin and the extremity points. The po-

        sition of the origin of the first link is fixed. The origin of the ith

        linkfori ∈ [2,K]coincideswiththeextremityofthe(i?1)thlink Figure1: Anillustrationoftheplanar

        atajointpoint. Therobotoperatesina2Dworkspacepopulated kinematicchainrobot.

        byasetofobstaclesObs.

        Page1of3–AdvancedTopicsinML:IntelligentRobotics–COMP4680/8650

        Aconfigurationoftheaboverobotcanberepresentedbyq = (θ ,θ ,··· ,θ ),whereθ ∈ [0,2π)isthe

        1 2 K i

        jointanglethatdefinestheangle(inradian)betweenthebaseandthefirstlinkfori = 1,andbetween

        theith and(i?1)th linkfori = [2,K]. TheC-spaceofthisrobotcanberepresentedasthespaceRK.

        In addition, let us define the C-space distance between two configurations, q = (θ ,θ ,··· ,θ ) and

        1 2 K

        q(cid:48) = (θ(cid:48),θ(cid:48),··· ,θ(cid:48) ), as: d (q,q(cid:48)) = max |θ ? θ(cid:48)|. This distance metric is often used in motion

        1 2 K C 1≤i≤K i i

        planningbecauseitisfastertocompute,comparedtothetypicalEuclideandistance.

        Pleaseanswerthefollowingquestions.

        1. [20 pts] Given 2 configurations, q = (θ ,θ ,··· ,θ ) and q(cid:48) = (θ(cid:48),θ(cid:48),··· ,θ(cid:48) ), let us assume

        1 2 K 1 2 K

        the robot moves from q to q(cid:48) along a straight line segment qq(cid:48) in the C-space. It is known that

        during such a movement, all points on the robot traces a path of length less than or equal to

        α·d (q,q(cid:48)), where α is a constant that can be upper bounded in terms of the link length L and

        C

        thenumberoflinksK. PleasefindthisupperboundofαandexpressedtheminLandK. Please

        provideitsderivation. Hintsareavailableinthelastpage.

        2. [10 pts] Now, recall that the workspace distance d (q,Obs) between the configuration q and

        W

        obstacles Obs in the workspace is defined as the distance between the closest pair of points

        on the robot placed at configuration q and Obs. Please find the radius τ of the neighbourhood

        Neigh(q) = {q(cid:48) | d (q,q(cid:48)) ≤ τ} that will guarantee the robot can move from configuration q to

        C

        q(cid:48) (for any q(cid:48) ∈ Neigh(q)) collision-free, following a straight line path qq(cid:48). Please express τ in

        termsoftheupperboundαfromA.1. andd (q,Obs).

        W

        PARTB

        The questionsin this part aimto provide hands-onexperience and better understandingof Sampling-

        based Motion Planning. To this end, let’s consider K rigid-body sphere robots are navigating a 3D

        workspace[?50,50]×[?50,50]×[?50,50] ? R3 populatedbyobstaclesintheshapeofcubes. And

        supposeeachrobotcanonlytranslate. Pleaseanswerthequestionsbelow.

        1. [5 pts] Please specify the C-space of the K robots. Assume that the origin of the coordinate

        systemofeachrobotisatthecenterofthesphere.

        2. [35 pts] Please write a sampling-based motion planning program for centralised planning of

        the robots. A collision-free path here means the robot will not collide with the obstacles and

        otherrobots. PleaseimplementeitherPRMwithanyoneormoresamplingstrategiesdiscussed

        in class, EST, or RRT. You can use and extend the collision check methods discussed in the

        pasttwoweekstutorials. Notethatanedgeinagraph/treeinSampling-basedMotionPlanning

        represents a straight line-segment in the C-space, which in this case represents K (sub-)paths

        for K robots. Weassumeallrobotsmoveinsuchawaythattheyspendtheexactsameduration

        and use constant velocity to traverse their respective (sub-)paths, though the velocity used by

        differentrobotsmaydiffer.

        Theinputtoyourprogrammustbeatext(.txt)fileandfollowstheformatbelow.

        (a) The file consists of K +|Obs|+2 lines, where K is the number of robots and |Obs| is the

        numberofobstaclesintheenvironment.

        (b) Thefirstlinecontainstwonumbersseparatedbyasinglewhitespace. Thefirstnumberin

        thislineisthenumberofrobots,whilstthesecondnumberisthenumberofobstacles.

        (c) The second line consists of K numbers, each separated by a white space. The ith number

        inthislineistheradiusofrobot-i.

        Page2of3–AdvancedTopicsinML:IntelligentRobotics–COMP4680/8650

        (d) Each of line-3 to line K +2 contains 6 numbers, which specifies the initial and goal con-

        figurationsoftheith robot,wherei = lineNumber?2. Theformatofeachlineis:

        InitialConf X InitialConf Y InitialConf Z ; GoalConf X GoalConf Y GoalConf Z

        (e) Each of line K +3 to line K +|Obs|+2 contains 4 numbers separated by a white space,

        which specifies the position of the center point and side length of the jth obstacle where

        j = lineNumber?(K +2)Theformatofeachoftheselinesis:

        CenterPt X CenterPt Y CenterPt Z SideLength

        The output to your program must be a text (.txt) file that specifies the collision-free path (a

        sequence of line segments) for the robots to move from the given initial to goal configurations.

        Theformatoftheoutputfileisasfollows.

        (a) Thefileconsistsofn+2lines,wherenisthenumberoflinesegmentsinyourpath

        (b) Thefirstlineisthenumberofline-segments

        (c) The second line consists of 3K numbers, specifying the initial configuration of each of

        the K robots. Each configuration is separated by a semicolon, while each number in a

        configurationisseparatedbyawhitespace. Specifically,theformatofline-2is:

        ConfRobot-1 X ConfRobot-1 Y ConfRobot-1 Z ; ConfRobot-2 X ConfRobot-2 Y

        ConfRobot-2 Z ; ··· ; ConfRobot-K X ConfRobot-K Y ConfRobot-K Z

        (d) Thenextnlinesaretheendconfigurationofeachlinesegment. Eachoftheselinesconsists

        of3K numbersandusestheformatasspecifiedforline-2oftheoutputfile(aboveitem)

        During demonstration, we will test the correctness of your program. For this purpose, we will

        providethreeproblemsandgiveyourprogramupto1minutetosolveeachproblem.

        3. [12 pts] Please evaluate the required time that your program needs to solve queries (i.e., find

        collision free paths) as the number of robots increases. For this purpose, please run your pro-

        gram for K = {1,3,5,7} on the same environment of your design. For each value of K, you

        should run for at least 10× to gather the average and 95%-confidence interval of the time to

        solvequeries. Ifthetimetofindthesolutionistoolong,youcanputalimitontherun-timeand

        recordthesuccessrateofsolvingquerieswithinthegiventime,inadditiontothetimetosolve

        queries. Please explain your selection of the environment, compare the results for the different

        K andexplainyourfindings.

        4. [12 pts] Please evaluate the performance of your program as the problem becomes more com-

        plex. To this end, please use K = 3 but alter the testing environment systematically, so as to

        tease out the complexity of sampling-based motion planning (hint: the concept of (cid:15),α,β could

        be useful in this design). For each environment, you should run for at least 10× to gather the

        averageand95%-confidenceintervalofthetimetosolvequeries. Ifthetimetofindthesolution

        is too long, you can put a limit on the run-time and record the success rate of solving queries

        within the given time, in addition to the time to solve queries. Please explain your selection of

        theenvironments,comparetheresultsforthedifferentenvironment,andexplainyourfindings.

        5. [6pts]WhatdoyouthinkcanbedonetoimprovetheperformanceyougetinB.3andB.4?

        oOo That’s all folks oOo

        )1+2

        K(K =

        i1= Ki

        (cid:80) ?

        r·θsinaidar θelgnalartnecdna rsuidarhtiwelcricafocranA ?

        .1.ArewsnaotsalumrofgniwollofehtdeenylekillliwuoY :tniH

        Page3of3–AdvancedTopicsinML:IntelligentRobotics–COMP4680/8650

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

        掃一掃在手機打開當前頁
      1. 上一篇:IFN563編程代做、代寫C++程序語言
      2. 下一篇:SWEN20003代做、代寫Java程序語言
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 国产婷婷色一区二区三区| 一区二区三区在线视频播放| 色天使亚洲综合一区二区| 国产伦精品一区二区三区视频金莲| 上原亚衣一区二区在线观看| 亚洲熟女综合色一区二区三区| 少妇无码AV无码一区| 无码中文人妻在线一区| 国产精品视频一区二区三区| 国产一区二区视频免费| 国产怡春院无码一区二区| 无码国产伦一区二区三区视频| 中文字幕在线观看一区| 午夜视频在线观看一区二区| 五十路熟女人妻一区二区| 亚洲综合在线一区二区三区| 亚洲日本久久一区二区va| 99久久精品国产一区二区成人| 亚洲日韩精品一区二区三区无码| 国产在线精品观看一区| 国产精品av一区二区三区不卡蜜| 亚洲午夜一区二区电影院| 亚洲国产国产综合一区首页| 亚洲中文字幕无码一区二区三区 | 亚洲av成人一区二区三区观看在线 | 久久久久一区二区三区| 一区二区三区杨幂在线观看| 亚洲AV无码一区二区三区在线观看| 国产SUV精品一区二区88L | 精品视频一区二区三区四区五区| 精品亚洲一区二区三区在线观看 | 亚洲AV福利天堂一区二区三 | 日本精品3d动漫一区二区| 中文字幕一区在线观看视频| 亚洲视频一区二区在线观看| 亚洲高清日韩精品第一区| 亚洲一区电影在线观看| 国产成人一区二区三区| 日本一区二区三区久久| 国产精品小黄鸭一区二区三区| 亚洲一区二区三区影院|