合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做 COMPSCI 753、代寫 Python,c/c++編程設計

        時間:2024-08-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Algorithms for Massive Data
        Assignment 1 / Semester 2, 2024 Graph Mining
        General instructions and data
        This assignment aims at exploring the PageRank algorithm on big real-world network data. By working on this assignment, you will learn how to implement some of the PageRank algorithms that we have learned in class.
        Data: Download the web-Google web dataset ’web-Google-final.txt’ from the assignment page on Canvas1. Each line of the file represents a directed edge from a source node to a destination node. There are N = 875713 nodes. Nodes are represented by numeric IDs ranging from 0 to 875712.
        Submission
        Please submit: (1) a file (.pdf or .html) that reports the answers requested for each task, and (2) a source code file (.py or .ipynb) that contains your code and detailed comments. Submit this on the Canvas assignment page by 23:59 NZST, Sunday 11 August. The files must contain your student ID, UPI and name.
        Penalty Dates
        The assignment will not be accepted after the last penalty date unless there are special circumstances (e.g., sickness with certificate). Penalties will be calculated as follows as a percentage of the marks for the assignment.
        • 23:59 NZST, Sunday 11 August – No penalty
        • 23:59 NZST, Monday 12 August – 25% penalty • 23:59 NZST, Tuesday 13 August – 50% penalty
        1This dataset is adapted from SNAP http://snap.stanford.edu/data/web-Google.html
         
        Tasks (100 points)
        Task 1 [40 points]: Implementation of Power Iteration Algorithm.
        In this task you will implement the basic version of the Power Iteration algorithm for PageR- ank. This task involves two sub-tasks, as follows:
        (A) [25 points] Implement the power iteration algorithm in matrix form to calculate the rank vector r, without teleport, using the PageRank formulation:
        r(t+1) = M · r(t)
        The matrix M is an adjacency matrix representing nodes and edges from your downloaded dataset, with rows representing destination nodes and columns representing source nodes. This matrix is sparse2. Initialize r(0) = [1/N, . . . , 1/N]T . Let the stop criteria of your power iteration algorithm be ||r(t+1) − r(t)||1 < 0.02 (please note the stop criteria involves the L1 norm). Spider traps and dead ends are not considered in this first task.
        (B) [15 points] Run your code on the provided Google web data to calculate the rank score for all the nodes. Report: (1) The running time of your power iteration algorithm; (2) The number of iterations needed to stop; (3) The IDs and scores of the top-10 ranked nodes.
        Task 2 [10 points]: Understanding dead-ends.
        In this task, before extending your code to support dead-ends using teleport, you will run some analysis on your current implementation from Task 1. This second task involves two sub-tasks:
        (A) [5 points] Calculate and report the number of dead-end nodes in your matrix M.
        (B) [5 points] Calculate the leaked PageRank score in each iteration of Task 1 (B). The leaked PageRank score is the total score you lose in that iteration because of dead-ends (hint: see example on slide 2 of W1.3 lecture notes). Create a plot that shows how this leaked score behaves as iterations progress. Explain the phenomenon you observe from this visualization.
        2Consider using a sparse matrix (e.g., use scipy.sparse in Python) in your implementation, so that your algorithm should stop within a few seconds in a basic computer. If your algorithm can’t stop within several minutes, you may want to check your implementation.
         1

        Task 3 [50 points]: Implementation of Power Iteration with Teleport.
        In this task, you will extend your implementation from Task 1 using the teleport mechanism to handle both dead-ends and spider traps. This task involves three sub-tasks:
        (A) [25 points] Extend your PageRank code to handle both spider traps and dead ends using the idea of teleport. In this task, your implementation will allow to teleport randomly to any node. Code the PageRank with teleport formulation that, using the sparse matrix M, for each iteration works in three steps (slide 8 of W1.3 lecture notes):
        Step 1: Calculate the r ranks of current iteration rnew (in matrix form): rnew =βM·rold
        Step 2: Calculate the constant S for teleport:
        S = 􏰀 rnew
        j j
        Step 3: Update rnew with teleport:
        rnew = rnew + (1 − S)/N
        In your implementation, use β = 0.9. Initialize r(0) = [1/N,...,1/N]T. The stop criteria should be ||rnew − rold||1 < 0.02.
        (B) [15 points] Run your code on the provided Google web data to calculate the rank score for all the nodes. Report: (1) The running time; (2) The number of iterations needed to stop; (3) The IDs and scores of the top-10 ranked nodes.
        (C) [10 points] Vary the teleport probability β with numbers in the set: {1, 0.9, 0.8, 0.7, 0.6}. Report the number of iterations needed to stop for each β. Explain, in words, your findings from this experiment.




        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





         

        掃一掃在手機打開當前頁
      1. 上一篇:MAS362 代寫、JAVA/C++編程設計代做
      2. 下一篇:MAST10006代做、Python/c++程序設計代寫
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
      4. 幣安app官網下載 短信驗證碼 丁香花影院

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 日韩精品一区二区三区老鸦窝| 中文字幕日本精品一区二区三区 | 久久一区不卡中文字幕| 亚洲欧美国产国产综合一区| 亲子乱av一区二区三区| 精品福利一区3d动漫| 精品无码综合一区二区三区| 亚洲第一区视频在线观看| 亚洲线精品一区二区三区影音先锋| 日韩一区二区三区电影在线观看| 高清一区二区三区日本久| 成人无码AV一区二区| 免费无码一区二区三区蜜桃| 国产福利一区二区在线视频 | 八戒久久精品一区二区三区| 精品国产一区二区三区香蕉 | 国产一区二区三区小说| 久久精品免费一区二区| 亚洲一区二区三区免费观看| 亚洲一区免费观看| 奇米精品视频一区二区三区| 久久久久一区二区三区| 亚洲无人区一区二区三区| 国产精品一区二区久久国产| 亚洲熟妇av一区二区三区漫画| 国产在线aaa片一区二区99| 亚洲老妈激情一区二区三区| 久久国产精品一区免费下载 | 一区二区三区视频网站| 一区免费在线观看| 国产一区二区三区久久精品| 国产一区视频在线| 毛片一区二区三区| 国产一区精品视频| 国产精品一区二区久久国产| av无码免费一区二区三区| 日韩精品一区二区三区中文版| 国产一区在线播放| 日韩精品在线一区二区| 国产午夜精品片一区二区三区| 在线视频精品一区|