合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        Econ 312代寫、代做c/c++,Java編程語言

        時(shí)間:2024-08-10  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Econ 312: Modeling Project 
         
        General Instructions 
         
        The Modeling project for this course is intended to give you hands on experience to construct an 
        econometric model for a real-world problem. You must keep a copy of this project to show your 
        prospective employers to substantiate the fact that you have learnt quite a lot of econometric 
        modeling. They will really like it in your resume. However, in this project you are not able to 
        involve yourself in the data collection effort, which is a major learning and exciting experience in 
        any econometric analysis. The data that are being provided to you have the features described 
        in the following section. 
         
        The modeling project Report must be typewritten, double-spaced, and must not exceed eight 
        pages. The Report must not be in EXCEL sheet or in STATA sheet. Over and above the 8-page 
        limit, you must attach STATA print out of the regression results as APPENDIX. On your title page, 
        you should have the name of the course, the semester (for instance, Summer 2023), the nice 
        title you have decided to give to your report, and your name. 
         
         
        Data Description 
         
        You are an economist at the headquarters of a major real estate company interested in the 
        Chicago urban area. Your task is to investigate the effects of various structural, locational, access 
        factors and factors relating to the local government spending on home value. Your programming 
        assistant has compiled data for a randomly selected sample of about 2000 property transactions 
        from Cook and DuPage counties of the Chicago Metropolis. 
         
        The data set for this project is up on the Canvas site. You need only to download the data set 
        assigned to you. 
         
         
        The details of the data, such as variable descriptions, original source, units in which they are 
        measured are available in the library or on a specific Internet site. You need to have them ready 
        before you start working on your modeling project. Do the following: 
        • Go to the SFSU Library website http://www.library.sfsu.edu/. 
        • Under OneSearch write Sudip Chattopadhyay Land Economics, then click search. 
        • Choose the first article in the journal Land Economics, volume 75, number 1, pp. 22-38, 
        1999. 
        • When you download a PDF copy of the journal article, look for Table 3 in the article for 
        variable definition, source, etc. 
         
         Instruction on the Modeling Project Write Up 
         
        1. 
         Explain, in your own words, what economic issues you are addressing in the project. 
         Explain, in your own words, why the subject may be interesting. 
         Discuss, in specific terms, what you wish to predict or explain (the subject of your paper). 
         Explain the dependent and each of the explanatory variables. Specify the units in which they 
        are measured. 
          
         Write down before doing any estimation, the original population regression model with 
        SPRICE, NROOMS, LVAREA, HAGEEFF, LSIZE, PTAXES, MEDINC, DFCL, SSPEND, MSPEND in 
        natural logarithm form. Keep the rest of the variables in unlogged form, since they have 
        zero values in the sample (variables that take “0” values cannot be logged). 
         Discuss how you expect each of your explanatory variables to influence the dependent 
        variable (i.e., positive or negative relationship). You must explain why you expect so. 
         
        2.. 
        i) State (mathematically and in words), all the assumptions you need to make in order to 
        estimate the model. 
        ii) Write out the estimated regression equation for the first computer run, with standard errors 
        in parenthesis under each coefficient. Also, present and F - statistic
        2 R for the estimated 
        model. You must use all the available explanatory variables for this run of the OLS model. 
        iii) Interpret 
        2 R . 
        iv) Perform a test of the overall significance of the regression equation (F-test for the full set of 
        regression parameters). Provide all the details of the test, including decision and conclusion. 
        v) Perform the test to see if the variable hageeff. is statistically significant at 5% level. Provide 
        all the details of the test. 
        vi) Drop the insignificant variables, one at a time, by looking at the p-value from the regression 
        results. This means you need to drop the one with the highest p-value, then run the 
        regression, look for the highest p-value again, then drop the associated variable….and 
        continue this way until all coefficients are significant at the 0.05 level of significance. 
        vii) Now do the subset test (i.e., the test for linear restrictions). That is, using the full regression 
        model from (ii) and the final model obtained in (vi), test whether the variables you dropped 
        are significant as a group, using F-test for the subset of the explanatory variables you finally 
        keep. Rejection of the null hypothesis would suggest that you might have dropped an 
        important variable and you should reconsider including one or more variables you have 
        dropped earlier. 
        viii) Write out your final regression equation, with standard error in parentheses under each 
        coefficient. Also, present and F - statistic
        2 R for this final regression. 
          
        3. 
        The following pertains to the revised model (i.e., after dropping all the insignificant explanatory 
        variables), or pertains to the original model if no revisions were made: 
         
         Interpret three most highly significant estimated regression coefficients in the context of the 
        problem. 
         Choose two explanatory variables from the final regression and construct and interpret the 
        confidence intervals for the population coefficients of your chosen explanatory variables. 
         
         
        5. Conclusion 
         State in your own words your conclusions regarding the model(s) you have estimated. 
         Carefully review in a paragraph the original and the revised models. 
         Discuss any problems your model might have. Do not hesitate to write the strengths and 
        weaknesses of your model and your results. 
         Finally, offer any interesting implications of your findings that you might convey to your boss 
        in a non-technical way. 
         
        4. Complete Report (8 pages maximum) and Appendix printouts 
         Write out the complete report in maximum of 8 pages. 
         Attach as pages 9, 10, etc. the STATA printout of the full-set and the final regressions, to the 
        report. No data set print out please. 
         Write your name on each page of the printout AND MAKE A PDF COPY OF THE ENTIRE 
        REPORT INCLUDING THE APPENDIX. 
         Upload the PDF copy of the report on Canvas. 
         
         
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:CSCI 2600代寫、Java編程語言代做
      2. 下一篇:COMP1212 代做、代寫 Java/Python 設(shè)計(jì)程序
      3. ·CSCI 2600代寫、Java編程語言代做
      4. ·代做DTS204TC、代寫Java編程語言
      5. ·CS1083代做、代寫Java編程語言
      6. ·代做INFO1113、代寫Java編程語言
      7. ·COMP1721代寫、代做java編程語言
      8. ·代做CS 550、代寫c++,Java編程語言
      9. ·CST3145代寫、Java編程語言代做
      10. ·代做COMP2396、代寫 java編程語言
      11. 合肥生活資訊

        合肥圖文信息
        出評 開團(tuán)工具
        出評 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動機(jī)性能
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時(shí)官網(wǎng)400(全國服務(wù)熱線)
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時(shí)客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士3號線
        合肥機(jī)場巴士3號線
      12. 上海廠房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        主站蜘蛛池模板: 亚洲高清美女一区二区三区| 一区二区精品视频| 小泽玛丽无码视频一区| 精品一区二区在线观看| 高清一区二区三区视频| 91精品一区二区三区久久久久| 精品乱码一区二区三区在线 | 极品少妇一区二区三区四区| 日本高清成本人视频一区| 美女AV一区二区三区| 国产一区二区三区韩国女主播| 国产视频一区在线观看| 久久精品国产一区二区三区不卡| 福利一区在线视频| 日亚毛片免费乱码不卡一区| 日本国产一区二区三区在线观看 | 亚洲一区二区三区播放在线| 日韩精品无码一区二区三区AV| 日韩精品一区二区三区中文字幕| 无码人妻aⅴ一区二区三区有奶水| 亚洲av无码一区二区三区天堂古代 | 无码人妻AⅤ一区二区三区水密桃| 99国产精品欧美一区二区三区| 亚洲电影国产一区| 99久久精品国产一区二区成人| 亚洲A∨无码一区二区三区 | 精品国产AV无码一区二区三区| bt7086福利一区国产| 一区一区三区产品乱码| 亚洲A∨精品一区二区三区下载| 国产一区在线mmai| 狠狠综合久久av一区二区| 女人和拘做受全程看视频日本综合a一区二区视频 | 日韩精品视频一区二区三区| 奇米精品一区二区三区在线观看| 亚洲成AV人片一区二区密柚 | 国产精品资源一区二区| 国产一区二区三区在线| 国产在线精品一区二区高清不卡| 国产精品一区二区av| 麻豆AV无码精品一区二区|