合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        Econ 312代寫(xiě)、代做c/c++,Java編程語(yǔ)言

        時(shí)間:2024-08-10  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Econ 312: Modeling Project 
         
        General Instructions 
         
        The Modeling project for this course is intended to give you hands on experience to construct an 
        econometric model for a real-world problem. You must keep a copy of this project to show your 
        prospective employers to substantiate the fact that you have learnt quite a lot of econometric 
        modeling. They will really like it in your resume. However, in this project you are not able to 
        involve yourself in the data collection effort, which is a major learning and exciting experience in 
        any econometric analysis. The data that are being provided to you have the features described 
        in the following section. 
         
        The modeling project Report must be typewritten, double-spaced, and must not exceed eight 
        pages. The Report must not be in EXCEL sheet or in STATA sheet. Over and above the 8-page 
        limit, you must attach STATA print out of the regression results as APPENDIX. On your title page, 
        you should have the name of the course, the semester (for instance, Summer 2023), the nice 
        title you have decided to give to your report, and your name. 
         
         
        Data Description 
         
        You are an economist at the headquarters of a major real estate company interested in the 
        Chicago urban area. Your task is to investigate the effects of various structural, locational, access 
        factors and factors relating to the local government spending on home value. Your programming 
        assistant has compiled data for a randomly selected sample of about 2000 property transactions 
        from Cook and DuPage counties of the Chicago Metropolis. 
         
        The data set for this project is up on the Canvas site. You need only to download the data set 
        assigned to you. 
         
         
        The details of the data, such as variable descriptions, original source, units in which they are 
        measured are available in the library or on a specific Internet site. You need to have them ready 
        before you start working on your modeling project. Do the following: 
        • Go to the SFSU Library website http://www.library.sfsu.edu/. 
        • Under OneSearch write Sudip Chattopadhyay Land Economics, then click search. 
        • Choose the first article in the journal Land Economics, volume 75, number 1, pp. 22-38, 
        1999. 
        • When you download a PDF copy of the journal article, look for Table 3 in the article for 
        variable definition, source, etc. 
         
         Instruction on the Modeling Project Write Up 
         
        1. 
         Explain, in your own words, what economic issues you are addressing in the project. 
         Explain, in your own words, why the subject may be interesting. 
         Discuss, in specific terms, what you wish to predict or explain (the subject of your paper). 
         Explain the dependent and each of the explanatory variables. Specify the units in which they 
        are measured. 
          
         Write down before doing any estimation, the original population regression model with 
        SPRICE, NROOMS, LVAREA, HAGEEFF, LSIZE, PTAXES, MEDINC, DFCL, SSPEND, MSPEND in 
        natural logarithm form. Keep the rest of the variables in unlogged form, since they have 
        zero values in the sample (variables that take “0” values cannot be logged). 
         Discuss how you expect each of your explanatory variables to influence the dependent 
        variable (i.e., positive or negative relationship). You must explain why you expect so. 
         
        2.. 
        i) State (mathematically and in words), all the assumptions you need to make in order to 
        estimate the model. 
        ii) Write out the estimated regression equation for the first computer run, with standard errors 
        in parenthesis under each coefficient. Also, present and F - statistic
        2 R for the estimated 
        model. You must use all the available explanatory variables for this run of the OLS model. 
        iii) Interpret 
        2 R . 
        iv) Perform a test of the overall significance of the regression equation (F-test for the full set of 
        regression parameters). Provide all the details of the test, including decision and conclusion. 
        v) Perform the test to see if the variable hageeff. is statistically significant at 5% level. Provide 
        all the details of the test. 
        vi) Drop the insignificant variables, one at a time, by looking at the p-value from the regression 
        results. This means you need to drop the one with the highest p-value, then run the 
        regression, look for the highest p-value again, then drop the associated variable….and 
        continue this way until all coefficients are significant at the 0.05 level of significance. 
        vii) Now do the subset test (i.e., the test for linear restrictions). That is, using the full regression 
        model from (ii) and the final model obtained in (vi), test whether the variables you dropped 
        are significant as a group, using F-test for the subset of the explanatory variables you finally 
        keep. Rejection of the null hypothesis would suggest that you might have dropped an 
        important variable and you should reconsider including one or more variables you have 
        dropped earlier. 
        viii) Write out your final regression equation, with standard error in parentheses under each 
        coefficient. Also, present and F - statistic
        2 R for this final regression. 
          
        3. 
        The following pertains to the revised model (i.e., after dropping all the insignificant explanatory 
        variables), or pertains to the original model if no revisions were made: 
         
         Interpret three most highly significant estimated regression coefficients in the context of the 
        problem. 
         Choose two explanatory variables from the final regression and construct and interpret the 
        confidence intervals for the population coefficients of your chosen explanatory variables. 
         
         
        5. Conclusion 
         State in your own words your conclusions regarding the model(s) you have estimated. 
         Carefully review in a paragraph the original and the revised models. 
         Discuss any problems your model might have. Do not hesitate to write the strengths and 
        weaknesses of your model and your results. 
         Finally, offer any interesting implications of your findings that you might convey to your boss 
        in a non-technical way. 
         
        4. Complete Report (8 pages maximum) and Appendix printouts 
         Write out the complete report in maximum of 8 pages. 
         Attach as pages 9, 10, etc. the STATA printout of the full-set and the final regressions, to the 
        report. No data set print out please. 
         Write your name on each page of the printout AND MAKE A PDF COPY OF THE ENTIRE 
        REPORT INCLUDING THE APPENDIX. 
         Upload the PDF copy of the report on Canvas. 
         
         
        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


         

        掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
      1. 上一篇:CSCI 2600代寫(xiě)、Java編程語(yǔ)言代做
      2. 下一篇:COMP1212 代做、代寫(xiě) Java/Python 設(shè)計(jì)程序
      3. ·CSCI 2600代寫(xiě)、Java編程語(yǔ)言代做
      4. ·代做DTS204TC、代寫(xiě)Java編程語(yǔ)言
      5. ·CS1083代做、代寫(xiě)Java編程語(yǔ)言
      6. ·代做INFO1113、代寫(xiě)Java編程語(yǔ)言
      7. ·COMP1721代寫(xiě)、代做java編程語(yǔ)言
      8. ·代做CS 550、代寫(xiě)c++,Java編程語(yǔ)言
      9. ·CST3145代寫(xiě)、Java編程語(yǔ)言代做
      10. ·代做COMP2396、代寫(xiě) java編程語(yǔ)言
      11. 合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        出評(píng) 開(kāi)團(tuán)工具
        出評(píng) 開(kāi)團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
      12. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) NBA直播 幣安下載

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        主站蜘蛛池模板: 一区二区三区免费精品视频| 国产一区二区精品久久凹凸| 亚洲免费一区二区| 国产成人精品无人区一区| 亚洲国产精品自在线一区二区 | 伊人久久精品无码麻豆一区| 中文字幕一区二区三区有限公司 | 美女视频黄a视频全免费网站一区 美女免费视频一区二区 | 波多野结衣一区在线| 人妻久久久一区二区三区| 国产一区二区三区高清视频| 国产日韩精品一区二区在线观看播放| 91video国产一区| 91在线看片一区国产| 亚洲一区二区中文| 无码人妻精品一区二区三区66| 日本一区午夜爱爱| 亚洲A∨精品一区二区三区| 国产综合精品一区二区| 日韩美女视频一区| 相泽南亚洲一区二区在线播放| 国产成人精品一区二三区熟女 | 一本大道东京热无码一区| 精品一区二区三区免费视频 | 国产成人精品视频一区二区不卡| 精品国产亚洲一区二区在线观看| 日韩在线一区高清在线| 在线观看精品视频一区二区三区| 亚洲国产av一区二区三区丶| 国产精品福利一区二区久久| 日韩一区二区超清视频| 伊人久久大香线蕉AV一区二区| 亚洲一区二区三区在线观看网站| 色噜噜狠狠一区二区三区| 精品国产伦一区二区三区在线观看| 日本不卡一区二区三区| 精品永久久福利一区二区| 一区国产传媒国产精品| 国产视频一区在线播放| 日韩动漫av在线播放一区| 中文字幕一区日韩在线视频|