合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        COMP9417代做、代寫Python語言編程

        時間:2024-07-17  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        COMP9417 - Machine Learning
        Homework 3: MLEs and Kernels
        Introduction In this homework we first continue our exploration of bias, variance and MSE of estimators.
        We will show that MLE estimators are not unnecessarily unbiased, which might affect their performance
        in small samples. We then delve into kernel methods: first by kernelizing a popular algorithm used in
        unsupervised learning, known as K-means. We then look at Kernel SVMs and compare them to fitting
        linear SVMs with feature transforms.
        Points Allocation There are a total of 28 marks.
        • Question 1 a): 2 marks
        • Question 1 b): 2 marks
        • Question 1 c): 4 marks
        • Question 2 a): 1 mark
        • Question 2 b): 1 mark
        • Question 2 c): 2 marks
        • Question 2 d): 2 marks
        • Question 2 e): 2 marks
        • Question 2 f): 3 marks
        • Question 2 g): 2 marks
        • Question 3 a): 1 mark
        • Question 3 b): 1 mark
        • Question 3 c): 1 mark
        • Question 3 d): 1 mark
        • Question 3 e): 3 marks
        What to Submit
        • A single PDF file which contains solutions to each question. For each question, provide your solution
        in the form of text and requested plots. For some questions you will be requested to provide screen
        shots of code used to generate your answer — only include these when they are explicitly asked for.
        1• .py file(s) containing all code you used for the project, which should be provided in a separate .zip
        file. This code must match the code provided in the report.
        • You may be deducted points for not following these instructions.
        • You may be deducted points for poorly presented/formatted work. Please be neat and make your
        solutions clear. Start each question on a new page if necessary.
        • You cannot submit a Jupyter notebook; this will receive a mark of zero. This does not stop you from
        developing your code in a notebook and then copying it into a .py file though, or using a tool such as
        nbconvert or similar.
        • We will set up a Moodle forum for questions about this homework. Please read the existing questions
        before posting new questions. Please do some basic research online before posting questions. Please
        only post clarification questions. Any questions deemed to be fishing for answers will be ignored
        and/or deleted.
        • Please check Moodle announcements for updates to this spec. It is your responsibility to check for
        announcements about the spec.
        • Please complete your homework on your own, do not discuss your solution with other people in the
        course. General discussion of the problems is fine, but you must write out your own solution and
        acknowledge if you discussed any of the problems in your submission (including their name(s) and
        zID).
        • As usual, we monitor all online forums such as Chegg, StackExchange, etc. Posting homework questions
         on these site is equivalent to plagiarism and will result in a case of academic misconduct.
        • You may not use SymPy or any other symbolic programming toolkits to answer the derivation questions.
         This will result in an automatic grade of zero for the relevant question. You must do the
        derivations manually.
        When and Where to Submit
        • Due date: Week 8, Monday July 15th, 2024 by 5pm. Please note that the forum will not be actively
        monitored on weekends.
        • Late submissions will incur a penalty of 5% per day from the maximum achievable grade. For example,
         if you achieve a grade of 80/100 but you submitted 3 days late, then your final grade will be
        80 − 3 × 5 = 65. Submissions that are more than 5 days late will receive a mark of zero.
        • Submission must be made on Moodle, no exceptions.
        Page 2Question 1. Maximum Likielihood Estimators and their Bias
        Let X1, . . . , Xn
        i.i.d. ∼ N(µ, σ
        2
        ). Recall that in Tutorial 2 we showed that the MLE estimators of µ, σ
        2 were
        µˆMLE and σˆ
        2
        MLE where
        µˆMLE = X, and σˆ
        2
        MLE =
         1
        n
        Xn
        i=1
        (Xi − X)
        2
        .
        In this question, we will explore these estimators in more depth.
        (a) Find the bias and variance of both µˆMLE and σˆ
        2
        MLE
        . Hint: You may use without proof the fact that
        var
         
        1
        σ
        2
        Xn
        i=1
        (Xi − X)
        2
        !
        = 2(n − 1)
        What to submit: the bias and variance of the estimators, along with your working.
        (b) Your friend tells you that they have a much better estimator for σ.
        Discuss whether this estimator is better or worse than the MLE estimator:.
        Be sure to include a detailed analysis of the bias and variance of both estimators, and describe what
        happens to each of these quantities (for each of the estimators) as the sample size n increases (use
        plots). For your plots, you can assume that σ = 1.
        What to submit: the bias and variance of the new estimator. A plot comparing the bias of both estimators as
        a function of the sample size n, a plot comparing the variance of both estimators as a function of the sample
        size n, use labels/legends in your plots. A copy of the code used here in solutions.py
        (c) Compute and then plot the MSE of the two estimators considered in the previous part. For your
        plots, you can assume that σ = 1. Provide some discussion as to which estimator is better (according
         to their MSE), and what happens as the sample size n gets bigger. What to submit: the MSEs of
        the two variance estimators. A plot comparing the MSEs of the estimators as a function of the sample size
        n, and some commentary. Use labels/legends in your plots. A copy of the code used here in solutions.py
        Question 2. A look at clustering algorithms
        Note: Using an existing/online implementation of the algorithms described in this question will
        result in a grade of zero. You may use code from the course with reference.
        The K-means algorithm is the simplest and most intuitive clustering algorithm available. The algorithm
        takes two inputs: the (unlabeled) data X1, . . . , Xn and a desired number of clusters K. The goal is to
        identify K groupings (which we refer to as clusters), with each group containing a subset of the original
        data points. Points that are deemed similar/close to each other will be assigned to the same grouping.
        Algorithmically, given a set number of iterations T, we do the following:
        1. Initialization: start with initial set of K-means (cluster centers): µ
        (a) Consider the following data-set of n = 5 points in R
        (2)
        2 by hand. Be sure to
        show your working.
        What to submit: your cluster centers and any working, either typed or handwritten.
        (b) Your friend tells you that they are working on a clustering problem at work. You ask for more
        details and they tell you they have an unlabelled dataset with p = 10000 features and they ran
        K-means clustering using Euclidean distance. They identified 52 clusters and managed to define
        labellings for these clusters based on their expert domain knowledge. What do you think about the
        usage of K-means here? Do you have any criticisms?
        What to submit: some commentary.
        (c) Consider the data and random clustering generated using the following code snippet:
        1 import matplotlib.pyplot as plt
        2 import numpy as np
        3 from sklearn import datasets
        4
        5 X, y = datasets.make_circles(n_samples=200, factor=0.4, noise=0.04, random_state=13)
        6 colors = np.array([’orange’, ’blue’])
        7
        8 np.random.seed(123)
        9 random_labeling = np.random.choice([0,1], size=X.shape[0], )
        10 plt.scatter(X[:, 0], X[:, 1], s=20, color=colors[random_labeling])
        11 plt.title("Randomly Labelled Points")
        12 plt.savefig("Randomly_Labeled.png")
        13 plt.show()
        14
        The random clustering plot is displayed here:
        1Recall that for a set S, |S| denotes its cardinality. For example, if S = {4, 9, 1} then |S| = 3.
        2The notation in the summation here means we are summing over all points belonging to the k-th cluster at iteration t, i.e. C
        (t)
        k
        .
        Page 4Implement K-means clustering from scratch on this dataset. Initialize the following two cluster
        centers:
        and run for 10 iterations. In your answer, provide a plot of your final clustering (after 10 iterations)
        similar to the randomly labeled plot, except with your computed labels in place of random labelling.
        Do you think K-means does a good job on this data? Provide some discussion on what you observe.
        What to submit: some commentary, a single plot, a screen shot of your code and a copy of your code
        in your .py file.
        (d) You decide to extend your implementation by considering a feature transformation which maps
        2-dimensional points (x1, x2) into 3-dimensional points of the form. Run your
        K-means algorithm (for 10 iterations) on the transformed data with cluster centers:
        Note for reference that the nearest mean step of the algorithm is now:
        ki = arg min
        k∈{1,...,K}
        . In your answer, provide a plot of your final clustering using the
        code provided in (c) as a template. Provide some discussion on what you observe. What to submit:
        a single plot, a screen shot of your code and a copy of your code in your .py file, some commentary.
        (e) You recall (from lectures perhaps) that directly applying a feature transformation to the data can
        be computationally intractable, and can be avoided if we instead write the algorithm in terms of
        Page 5a function h that satisfies: h(x, x0
        ) = hφ(x), φ(x
        0
        )i. Show that the nearest mean step in (1) can be
        re-written as:
        ki = arg min
        k∈{1,...,K}
        h(Xi
        , Xi) + T1 + T2
        
        ,
        where T1 and T2 are two separate terms that may depend on C
        (t−1)
        k
        , h(Xi
        , Xj ) and h(Xj , X`) for
        Xj , X` ∈ C
        (t−1)
        k
        . The expressions should not depend on φ. What to submit: your full working.
        (f) With your answer to the previous part, you design a new algorithm: Given data X1, . . . , Xn, the
        number of clusters K, and the number of iterations T:
        1. Initialization: start with initial set of K clusters: C
        (0)
        1
        , C(0)
        2
        , . . . , C(0)
        K .
        2. For t = 1, 2, 3, . . . , T :
        • For i = 1, 2, . . . , n: Solve
        ki = arg min
        k∈{1,...,K}
        h(Xi
        , Xi) + T1 + T2
        
        .
        • For k = 1, . . . , K, set
        C
        (t)
        k = {Xi such that ki = k}.
        The goal of this question is to implement this new algorithm from scratch using the same data
        generated in part (c). In your implementation, you will run the algorithm two times: first with the
        function:
        h1(x, x0
        ) = (1 + hx, x0
        i),
        and then with the function
        h2(x, x0
        ) = (1 + hx, x0
        i)
        2
        .
        For your initialization (both times), use the provided initial clusters, which can be loaded
        in by running inital clusters = np.load(’init clusters.npy’). Run your code for at
        most 10 iterations, and provide two plots, one for h1 and another for h2. Discuss your results for
        the two functions. What to submit: two plots, your discussion, a screen shot of your code and a copy of
        your code in your .py file.
        (g) The initializations of the algorithms above were chosen very specifically, both in part (d) and (f).
        Investigate different choices of intializations for your implemented algorithms. Do your results
        look similar, better or worse? Comment on the pros/cons of your algorithm relative to K-means,
        and more generally as a clustering algorithm. For full credit, you need to provide justification in
        the form of a rigorous mathematical argument and/or empirical demonstration. What to submit:
        your commentary.
        Question 3. Kernel Power
        Consider the following 2-dimensional data-set, where y denotes the class of each point.
        index x1 x2 y
        1 1 0 -1
        2 0 1 -1
        3 0 -1 -1
        4 -1 0 +1
        5 0 2 +1
        6 0 -2 +1
        7 -2 0 +1
        Page 6Throughout this question, you may use any desired packages to answer the questions.
        (a) Use the transformation x = (x1, x2) 7→ (φ1(x), φ2(x)) where φ1(x) = 2x
        2
        2 − 4x1 + 1 and φ2(x) =
        x
        2
        1 − 2x2 − 3. What is the equation of the best separating hyper-plane in the new feature space?
        Provide a plot with the data set and hyperplane clearly shown.
        What to submit: a single plot, the equation of the separating hyperplane, a screen shot of your code, a copy
        of your code in your .py file for this question.
        (b) You wish to fit a hard margin SVM using the SVC class in sklearn. However, the SVC class only
        fits soft margin SVMs. Explain how one may still effectively fit a hard margin SVM using the SVC
        class. What to submit: some commentary.
        (c) Fit a hard margin linear SVM to the transformed data-set in part (a). What are the estimated
        values of (α1, . . . , α7). Based on this, which points are the support vectors? What error does your
        computed SVM achieve?
        What to submit: the indices of your identified support vectors, the train error of your SVM, the computed
        α’s (rounded to 3 d.p.), a screen shot of your code, a copy of your code in your .py file for this question.
        (d) Consider now the kernel k(x, z) = (2 + x
        >z)
        2
        . Run a hard-margin kernel SVM on the original (untransformed)
        data given in the table at the start of the question. What are the estimated values of
        (α1, . . . , α7). Based on this, which points are the support vectors? What error does your computed
        SVM achieve?
        What to submit: the indices of your identified support vectors, the train error of your SVM, the computed
        α’s (rounded to 3 d.p.), a screen shot of your code, a copy of your code in your .py file for this question.
        (e) Provide a detailed argument explaining your results in parts (i), (ii) and (iii). Your argument
        should explain the similarities and differences in the answers found. In particular, is your answer
        in (iii) worse than in (ii)? Why? To get full marks, be as detailed as possible, and use mathematical
        arguments or extra plots if necessary.
        What to submit: some commentary and/or plots. If you use any code here, provide a screen shot of your code,
        and a copy of your code in your .py file for this question.
        Page 7

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當前頁
      1. 上一篇:代寫AT2- Accounting Systems、代做Java
      2. 下一篇:菲律賓降簽多久可以出境(9G工簽降簽所需的材料)
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
      4. 幣安app官網下載 短信驗證碼 丁香花影院

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 男人的天堂精品国产一区| 无码一区二区三区免费| 亚洲综合色一区二区三区小说| 日本精品一区二区久久久| 中文字幕无码一区二区三区本日 | 久久国产免费一区| 日韩一区二区三区免费体验| 亚洲熟妇无码一区二区三区 | 国产成人一区二区三区视频免费| 国产精品一区二区久久沈樵| 亚洲色无码专区一区| 亚洲日本va午夜中文字幕一区| 夜色福利一区二区三区| 国产综合一区二区在线观看| 久久99国产精品一区二区| 日本精品一区二区三区在线观看| 国产一区二区三区在线免费观看 | 无码人妻一区二区三区兔费| 国产精品视频无圣光一区| 国产精品一区在线麻豆| 国产在线第一区二区三区| 99久久精品午夜一区二区| 2021国产精品一区二区在线| 精品一区二区久久| 亚洲av无码一区二区三区网站 | 中文字幕精品一区二区日本| 久久精品一区二区三区日韩| 国精品无码一区二区三区在线| 99精品国产一区二区三区不卡| 成人精品一区二区不卡视频| 国产无码一区二区在线| 91视频一区二区| 精品国产aⅴ无码一区二区| 国产成人精品亚洲一区| 精品一区二区三区在线观看l| 精品人妻一区二区三区四区在线| 国产精品一区二区久久沈樵| 国产精品99无码一区二区| 国偷自产Av一区二区三区吞精 | 精品无码国产一区二区三区麻豆| 国产午夜精品一区二区|