99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CS 369代做、代寫Python編程語言

時(shí)間:2024-05-24  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



CS 369 2024 Assignment 4
See Canvas for due dates
In the ffrst part of this assignment, we use a Hidden Markov Model to model secondary
structure in protein sequences and implement a couple of algorithms we saw in lectures.
In the second part, we simulate sequences down a tree according to the Jukes-Cantor
model then use distance methods to try to reconstruct the tree.
Write your code in Python and present your code embedded in a report in a Jupyter
Notebook. Make sure you test your code thoroughly and write clear, commented code
that others can understand.
Submit two ffles to Canvas: the .ipynb and .html both showing code and results by 10pm
on the due date.
There are 30 marks in total for this assessment.
1. [14 marks total] Suppose we wish to estimate basic secondary structure in protein
(amino acid) sequences. The model we consider is a simplistic rendition of the
model discussed in S C. Schmidler et al. (2004) Bayesian Segmentation of Protein
Secondary Structure, doi:10.1089/10665270050081496
We assume that at each point of the sequence, the residue is associated with one
of three secondary structures: α-helix, β-strand and loops which we label H, S
and T, respectively. To simplify the problem, we classify the amino acids as either
hydrophobic, hydrophilic or neutral (B, I or N, respectively) so a sequence can be
represented by this 3-letter alphabet.
In a α-helix, the residues are 15% neutral, 20% hydrophobic and 65% hydrophilic.
In a β-strand, they are 30%, 60%, 10% and in a loop they are 70%, 15%, 15%.
Assume that all secondary structures have geometrically distributed length with
α-helices having mean 15 residues, β-strands having a mean of 8 residues and loops
a mean of 6 residues. A β-strand is followed by an α-helix 40% of the time and a
loop 60% of the time. An α-helix is followed by a β-strand 30% of the time and a
loop 70% of the time and a loop is equally likely to be followed by a strand or a
helix. At the start of a sequence, any structure is equally likely.
When writing code below, work in natural logarithms throughout to make your
calculations robust to numerical error.
(a) [3 marks] Sketch a diagram of the HMM (a hand-drawn and scanned picture
is ffne). In your diagram, show only state nodes and transitions. Show the
emission probabilities using a separate table.
Note that the transition probabilities of states to themselves (e.g., aHH) are
not given. Derive them by noticing that you are given the expected lengths
of α-helices, β-strands and loops, and that if a quantity L is geometrically
distributed with parameter p then the expected value of L is E[L] = 1/p.
Make sure you use the correct parametrisation of the geometric distribution
1(noting that you can’t have a secondary structure of length 0) and remember
that
P
l
akl = 1 for any state k.
(b) [3 marks] Write a method to simulate state and symbol sequences of arbitrary
length from the HMM. Your method should take sequence length, and model
parameters (a and e) as arguments. Simulate and print out a state and symbol
sequence of length 200.
(c) [3 mark] Write a method to calculate the natural logarithm of the joint probability
P(x, π). Your method should take x, π, and model parameters as
arguments.
Use your method to calculate P(x, π) for π and x given below and for the
sequences you simulated in Q1b.
π = S,S,H,H,H,T,T,S,S,S,H,T,T,H,H,H,S,S,S,S,S,S
x = B,I,B,B,N,I,N,B,N,I,N,B,I,N,B,I,I,N,B,B,N,N
(d) [5 marks] Implement the forward algorithm for HMMs to calculate the natural
logarithm of the probability P(x). Your method should take x as an argument.
Note that we don’t model the end state here.
Use your method to calculate log(P(x)) for π and x given in Q1c and for the
sequences you simulated in Q1b.
How does P(x) compare to P(x, π) for the examples you calculated? Does
this relationship hold in general? Explain your answer.
22. [16 marks total] In this question you will write a method that simulates random
trees, simulates sequences using a mutation process on these trees, calculate a
distance matrix from the simulated sequences and then, using existing code, reconstruct
 the tree from this distance matrix.
(a) [5 marks] Write a method that simulates trees according to the Yule model
(described below) with takes as input the number of leaves, n, and the branching
 parameter, λ. Use the provided Python classes.
The Yule model is a branching process that suggests a method of constructing
trees with n leaves. From each leaf, start a lineage going back in time. Each
lineage coalesces with others at rate λ. When there k lineages, the total rate
of coalescence in the tree is kλ. Thus, we can generate a Yule tree with n
leaves as follows:
Set k = n,t = 0.
Make n leaf nodes with time t and labeled from 1 to n. This is the set of
available nodes.
While k > 1, iterate:
Generate a time tk ∼ Exp (kλ). Set t = t + tk.
Make a new node, m, with height t and choose two nodes, i and j,
uniformly at random from the set of available nodes. Make i and j
the child nodes of m.
Add m to the set of available nodes and remove i and j from this set.
Set k = k-1.
Simulate 1000 trees with λ = 0.5 and n = 10 and check that the mean height
of the trees (that is, the time of the root node) agrees with the theoretical
mean of 3.86.
Use the provided plot tree method to include a picture of a simulated tree
with 10 leaves and λ = 0.5 in your report. To embed the plot in your report,
include in the ffrst cell of your notebook the command %matplotlib inline
(b) [5 marks] The Jukes-Cantor model of DNA sequence evolution is simple:
each site mutates at rate µ and when a mutation occurs, a new base is chosen
uniformly at random from the four possible bases, {A, C, G, T}. If we ignore
mutations from base X to base X, the mutation rate is
3
4
µ. All sites mutate
independently of each other. A sequence that has evolved over time according
to the Jukes-Cantor model has each base equally likely to occur at each site.
The method mutate is provided to simulate the mutation process.
Write a method to simulate sequences down a simulated tree according to the
Jukes-Cantor model.
Your method should take a tree with n leaves, sequence length L, and a
mutation rate µ. It should return either a matrix of sequences corresponding
to nodes in the tree or the tree with sequences stored at the nodes.
3Your method should generate a uniform random sequence of length L at the
root node and recursively mutate it down the branches of the tree, using the
node heights to calculate branch length.
In your report, include a simulated tree with n = 10 and λ = 0.5 and a set
of sequences of length L = 20 and mutation parameter µ = 0.5 simulated on
that tree.
(c) [3 marks] Write a method to calculate the Jukes-Cantor distance matrix, d,
from a set of sequences, where dij is the distance between the ith and the
jth sequences. Recall that the Jukes-Cantor distance for sequences x and y
is deffned by
where fxy is the fraction of differing sites between x and y. Since we will be
dealing with short sequences, use the following deffnition of fxy so that the
distances are well-deffned:
fxy = min
where Dxy is the number of differing sites between x and y and L is the length
of x.
Include a simulated set of sequences of length L = 20 from the tree leaves and
corresponding distance matrix in your report for a tree with n = 10, λ = 0.5
and mutation parameter µ = 0.5.
(d) [3 marks] Now simulate a tree with n = 10 and λ = 0.5 and on that tree,
simulate three sets of sequences with lengths L = 20, L = 50 and L = 200,
respectively, with ffxed µ = 0.1. For each simulated set of sequences, calculate
the distance matrix and print it out.
Then reconstruct the tree using the provided compute upgma tree method.
Use the plot tree method to include a plot of the original tree and a plot of
the reconstructed tree for each distance matrix.
Comment on the quality of the reconstructions and the effect that increasing
the sequence length has on the accuracy of the reconstruction.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫CS373 COIN、代做Python設(shè)計(jì)程序
  • 下一篇:CSSE7030代做、代寫Python程序設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                色婷婷国产精品| 麻豆精品视频在线观看| 成人国产精品免费网站| 亚洲激情综合网| 欧美岛国在线观看| 成人黄色一级视频| 视频在线观看91| 国产精品另类一区| 欧美三区免费完整视频在线观看| 青娱乐精品视频在线| 亚洲国产精品传媒在线观看| 欧美日韩国产电影| av影院午夜一区| 韩国视频一区二区| 日韩专区中文字幕一区二区| 综合网在线视频| 久久久午夜精品理论片中文字幕| 91成人国产精品| 成人三级伦理片| 久久精品二区亚洲w码| 中文在线一区二区| 欧美三级乱人伦电影| 韩国精品在线观看| 国产精品免费aⅴ片在线观看| 91福利精品视频| 国产真实乱子伦精品视频| 国产欧美日韩亚州综合| 色94色欧美sute亚洲线路二| 精品无人区卡一卡二卡三乱码免费卡| 国产欧美一区二区在线| 精品视频在线免费看| 国产一区二区三区免费| 亚洲免费在线观看| 欧美国产精品中文字幕| 久久久综合激的五月天| 欧美日韩视频在线观看一区二区三区 | 国产超碰在线一区| 亚洲你懂的在线视频| 欧美刺激脚交jootjob| 在线视频国内一区二区| 韩国三级中文字幕hd久久精品| 亚洲成人免费av| 一区二区激情小说| 国产精品视频线看| 欧美成人乱码一区二区三区| 色婷婷av一区二区三区之一色屋| 成av人片一区二区| 成人av动漫在线| 国产精品一区二区91| 亚洲成人av电影在线| 自拍视频在线观看一区二区| 精品国精品国产尤物美女| 在线欧美小视频| 大陆成人av片| 久久超级碰视频| 日韩精品91亚洲二区在线观看| 中文字幕在线不卡一区| 日韩你懂的在线观看| 欧美日韩电影在线播放| 99国产精品久久久久久久久久久| 黑人巨大精品欧美黑白配亚洲| 亚洲妇女屁股眼交7| 亚洲精品中文字幕乱码三区| 欧美国产综合色视频| 久久中文娱乐网| 日韩免费看网站| 欧美成人精品高清在线播放| 91精品在线麻豆| 欧美日韩成人在线| 欧美日韩一区不卡| 欧美性xxxxxx少妇| 在线观看视频一区二区欧美日韩| 91一区二区在线| 99re亚洲国产精品| av电影在线观看完整版一区二区| 国产一区不卡精品| 国产精品一区二区男女羞羞无遮挡 | 美女精品自拍一二三四| 久久av老司机精品网站导航| 蜜臀久久99精品久久久画质超高清| 亚洲无人区一区| 午夜婷婷国产麻豆精品| 亚洲成人在线免费| 日韩国产欧美三级| 免费视频一区二区| 日本午夜精品一区二区三区电影 | 韩国欧美一区二区| 国产一区二区在线观看免费| 韩国v欧美v日本v亚洲v| 国产一区二区影院| 国产福利91精品一区二区三区| 99国产精品久久久久| 欧美精品免费视频| 中文字幕精品在线不卡| 性欧美大战久久久久久久久| 精品中文av资源站在线观看| 99国产麻豆精品| 日韩午夜中文字幕| 专区另类欧美日韩| 美女视频网站黄色亚洲| 不卡av在线免费观看| 91精品一区二区三区久久久久久 | 国产激情91久久精品导航| 99久久99久久久精品齐齐| 欧美放荡的少妇| 国产精品久久午夜夜伦鲁鲁| 日本不卡视频在线| av成人免费在线| 日韩欧美国产1| 一区二区在线观看视频| 国产在线视频精品一区| 欧美色爱综合网| 中文字幕一区免费在线观看| 日本成人在线网站| 成人免费av资源| 欧美日韩在线三级| 精品国产乱码久久久久久影片| 中文字幕不卡一区| 午夜一区二区三区视频| 国产一区二区三区免费观看| 91亚洲精品一区二区乱码| 色综合天天天天做夜夜夜夜做| 日本黄色一区二区| 日韩一级高清毛片| 久久精品视频网| 亚洲欧美日韩久久| 日韩黄色在线观看| 成人av综合在线| 日韩三级电影网址| 亚洲日本在线a| 日韩高清一区二区| 成人av免费在线观看| 欧美一二三在线| 自拍av一区二区三区| 黄网站免费久久| 欧美色图激情小说| 欧美激情艳妇裸体舞| 久久综合综合久久综合| 一本久久精品一区二区| 久久精品免视看| 久久电影网电视剧免费观看| 日韩一级片网站| 久久精品国产色蜜蜜麻豆| 色婷婷av一区二区三区软件 | jlzzjlzz欧美大全| 日韩欧美一区二区久久婷婷| 亚洲欧美成人一区二区三区| 国产精品一二三在| 日韩欧美资源站| 亚洲一卡二卡三卡四卡| 欧美视频日韩视频在线观看| 一区二区三区欧美久久| 日本韩国精品在线| 亚洲高清免费视频| 欧美一区二区三区四区视频| 奇米影视一区二区三区| 欧美一区二区三区免费| 美女视频黄 久久| 精品国产露脸精彩对白| 国产乱国产乱300精品| 欧美极品美女视频| caoporen国产精品视频| 亚洲欧美日韩国产一区二区三区| 91麻豆福利精品推荐| 有码一区二区三区| 欧美日韩激情在线| 久久精品国产澳门| 国产欧美一区二区精品仙草咪| 成人国产精品免费网站| 亚洲男女一区二区三区| 欧美久久婷婷综合色| 捆绑调教一区二区三区| 久久精品欧美一区二区三区不卡 | 日韩精品中文字幕在线一区| 久久成人av少妇免费| 国产亚洲制服色| 不卡视频免费播放| 亚洲一卡二卡三卡四卡| 日韩一区二区免费在线观看| 国产成人在线视频网址| 日韩一区中文字幕| 欧美高清dvd| 国产精品一二三| 亚洲欧洲中文日韩久久av乱码| 欧美精品丝袜中出| 国产不卡在线播放| 亚洲韩国精品一区| 26uuu成人网一区二区三区| av在线播放一区二区三区| 午夜欧美视频在线观看| 精品福利视频一区二区三区| 高清不卡一区二区在线| 亚洲成人综合网站| 日韩一区二区三区免费观看| 青青青爽久久午夜综合久久午夜| 欧美一区二区三区在| 激情久久久久久久久久久久久久久久| 欧美成人国产一区二区| 国产一区在线看| 国产精品久久久久久久久免费丝袜|