合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫CS373 COIN、代做Python設計程序

        時間:2024-05-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        DETECTION 
        ASSIGNMENT
        2024 Semester 1
        1
        Version 2.2Deadline: 3rd June 2024, 23:59pm
        ●In this assignment, you will write a Python code pipeline to automatically detect all the coins in the 
        given images. This is an individual assignment, so every student has to submit this assignment! This 
        assignment is worth 15 marks.
        ●We have provided you with 6 images for testing your pipeline (you can find the images in the 
        ‘Images/easy’ folder).
        ○Your pipeline should be able to detect all the coins in the image labelled with easy-level. This will 
        reward you with up to 10 marks.
        ○For extension (up to 5 marks), try images labelled as hard-level images in the “Images/hard” folder.
        ○Write a short reflective report about your extension. (Using Latex/Word)
        ●To output the images shown on the slides for checking, you may use the following code:
        fig, axs = pyplot.subplots(1, 1)
        # replace image with your image that you want to output
        axs.imshow(image, cmap='gray')
        pyplot.axis('off')
        pyplot.tight_layout()
        pyplot.show()
        2SUBMISSION
        Please upload your submission as a zipped file of the assignment folder to the UoA 
        Assignment Dropbox by following this link: 
        https://canvas.auckland.ac.nz/courses/103807/assignments/3837**
        ●Don’t put any virtual environment (venv) folders into this zip file, it just adds to the size, and we 
        will have our own testing environment.
        ●Your code for executing the main coin detection algorithm has to be located in the provided 
        “CS3**_coin_detection.py” file!
        ●You can either put all of your code into that file, or use a modular structure with additional files 
        (that, of course, have to be submitted in the zip file). However, we will only execute the 
        “CS3**_coin_detection.py” file to see if your code works for the main component!
        ●The main component of the assignment (“CS3**_coin_detection.py”) must not use any non-built-in 
        Python packages (e.g., PIL, OpenCV, NumPy, etc.) except for Matplotlib. Ensure your IDE hasn’t 
        added any of these packages to your imports.
        ●For the extensions, please create a new Python source file called 
        ‘CS3**_coin_detection_extension.py’
        ; this will ensure your extension part doesn’t mix up with the 
        main component of the assignment. Remember, your algorithm has to pass the main component 
        first!
        ●Including a short PDF report about your extension.
        ●Important: Use a lab computer to test if your code works on Windows on a different machine 
        (There are over 300 students, we cannot debug code for you if it doesn’t work!)
        3easy_case_1 final output
        easy_case_2 final output
        easy_case_4 final output easy_case_6 final outputASSIGNMENT STEPS
        5
        1. Convert to greyscale and normalize
        I. Convert to grey scale image: read input image using the ‘readRGBImageToSeparatePixelArrays()’ helper 
        function. Convert the RGB image to greyscale (use RGB channel ratio 0.3 x red, 0.6 x green, 0.1 x blue), 
        and round the pixel values to the nearest integer value.
        II. Contrast Stretching: stretch the values between 0 to 255 (using the 5-95 percentile strategy) as described 
        on lecture slides ImagesAndHistograms, p20-68). Do not round your 5% and 95% cumulative histogram 
        values. Your output for this step should be the same as the image shown on Fig. 2.
        Hint 1: see lecture slides ImagesAndHistograms and Coderunner Programming quiz in Week 10.
        Hint 2: for our example image (Fig. 1), the 5_percentile (f_min) = 86 and the 95_percentile (f_max) = 1**.
        Fig. 1: input Fig. 2: step 1 output
        We will use this image 
        (‘easy_case_1’) as an 
        example on this slides2. Edge Detection
        I. Apply a 3x3 Scharr filter in horizontal (x) and vertical (y) directions independently to get the edge maps (see 
        Fig. 3 and Fig. 4), you should store the computed value for each individual pixel as Python float.
        II. Take the absolute value of the sum between horizontal (x) and vertical (y) direction edge maps (see Hint 4). You 
        do not need to round the numbers. The output for this step should be the same as the image shown on Fig. 5.
        Hint 1: see lecture slides on edge detection and Coderunner Programming quiz in Week 11.
        Hint 2: please use the 3x3 Scharr filter shown below for this assignment:
        6
        Hint 4: you should use the BorderIgnore option and set border 
        pixels to zero in output, as stated on the slide Filtering, p13.
        Hint 5: for computing the edge strength, you may use the 
        following equation:
        gm
        (x, y) = |gx
        (x, y)| + |gy
        (x, y)|
        Absolute grey level 
        gradient on the 
        horizontal direction
        Absolute grey level 
        gradient on the vertical 
        direction
        Edge map on 
        horizontal and 
        vertical
        Fig. 5: Step 2 
        output (gm
        )
        Fig. 4: Edge map 
        (gy
        ) on vertical 
        direction
        Fig. 3: Edge map 
        (gx
        ) on horizontal 
        direction7
        3. Image Blurring
        Apply 5x5 mean filter(s) to image. Your output for this step should be the same as the image shown on 
        Fig. 7.
        Hint 1: do not round your output values.
        Hint 2: after computing the mean filter for one 5x5 window, you should take the absolute value of your 
        result before moving to the next window.
        Hint 3: you should use the BorderIgnore option and set border pixels to zero in output, as stated on the 
        slide Filtering, p13.
        Hint 3: try applying the filter three times to the image sequentially.
        Hint 4: see lecture slides on image filtering and Coderunner Programming quiz in Week 11.
        Fig. 7: Step 3 output Fig. 6: Grayscale histogram for output from step 38
        4. Threshold the Image
        Perform a simple thresholding operation to segment the coin(s) from the black background. After 
        performing this step, you should have a binary image (see Fig. 10).
        Hint 1: 22 would be a reasonable value for thresholding for our example image, set any pixel value 
        smaller than 22 to 0; this represents your background (region 1) in the image, and set any pixel value 
        bigger or equal to 22 to 255; which represents your foreground (region 2) – the coin.
        Hint 2: see lecture slides on image segmentation (p7) and see Programming quiz on Coderunner on 
        Week 10.
        Fig. 9: Step 3 output Fig. 10: Step 4 output Fig. 8: Grayscale histogram for output from step 39
        5. Erosion and Dilation
        Perform several dilation steps followed by several erosion steps. You may need to repeat the dilation 
        and erosion steps multiple times. Your output for this step should be the same as the image shown on Fig. 
        11.
        Hint 1: use circular 5x5 kernel, see Fig. 12 for the kernel details.
        Hint 2: the filtering process has to access pixels that are outside the input image. So, please use the 
        BoundaryZeroPadding option, see lecture slides Filtering, p13.
        Hint 2: try to perform dilation 3-4 times first, and then erosion 3-4 times. You may need to try a couple 
        of times to get the desired output.
        Hint 3: see lecture slides on image morphology and Coderunner Programming quiz in Week 12.
        Fig. 11: Step 5 output
        Fig. 12: Circular 5x5 kernel for 
        dilation and erosion10
        6. Connected Component Analysis
        Perform a connected component analysis to find all connected components. Your output for this 
        step should be the same as the image shown on Fig. 13.
        After erosion and dilation, you may find there are still some holes in the binary image. That is 
        fine, as long as it is one connected component.
        Hint 1: see lecture slides on Segmentation_II, p4-6, and Coderunner Programming quiz in Week 
        12.
        Fig. 13: Step 6 outputWe will provide code for drawing the bounding box(es) 
        in the image, so please store all the bounding box 
        locations in a Python list called ‘bounding_box_list’, so 
        our program can loop through all the bounding boxes 
        and draw them on the output image.
        Below is an example of the ‘bounding_box_list’ for our 
        example image on the right.
        11
        7. Draw Bounding Box
        Extract the bounding box(es) around all regions that your pipeline has found by looping over 
        the image and looking for the minimum and maximum x and y coordinates of the pixels in the 
        previously determined connected components. Your output for this step should be the same as 
        the image shown on Fig. 14.
        Make sure you record the bounding box locations for each of the connected components your 
        pipeline has found.
        Bounding_box_list=[[74, 68, 312, 303]]
        A list of list
        Bounding_box_min_x
        Bounding_box_min_y Bounding_box_max_x
        Bounding_box_max_y
        Fig. 14: Step 7 outputInput
        Drawing 
        Bounding Box
        Color to Gray Scale 
        and Normalize
        Edge 
        Detection
        Image 
        Blurring Thresholding
        Dilation and 
        Erosion
        Connected 
        Component Analysis
        12
        Coin Detection Full Pipelineeasy_case_1 final output easy_case_2 final output
        easy_case_4 final output easy_case_6 final outputEXTENSION
        For this extension (worth 5 marks), you are expected to alter some parts of the pipeline.
        ●Using Laplacian filter for image edge detection
        ○Please use the Laplacian filter kernel on the right (see Fig. 15).
        ○You may need to change subsequent steps as well, if you decide to
        use Laplacian filter.
        ●Output number of coins your pipeline has detected.
        ●Testing your pipeline on the hard-level images we provided.
        ○For some hard-level images, you may need to look at the size of the connected components to decide which 
        component is the coin.
        ●Identify the type of coins (whether it is a **dollar coin, 50-cent coin, etc.). 
        ○Since different type of coins have different sizes, you may want to compute the area of the bounding box in 
        the image to identify them.
        ●etc.
        Submissions that make the most impressive contributions will get full marks. Please create a new 
        Python source file called ‘CS3**_coin_detection_extension.py’ for your extension part, and include a 
        short PDF report about your extension. Try to be creative!
        14
        Fig. 15: Laplacian filter kernel

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當前頁
      1. 上一篇:INTE2401代寫、代做Java設計程序
      2. 下一篇:CS 369代做、代寫Python編程語言
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
      4. 幣安app官網下載 短信驗證碼 丁香花影院

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 日韩精品一区二区三区影院| bt7086福利一区国产| 欧洲精品码一区二区三区免费看 | 日韩少妇无码一区二区三区| 日本一区二区免费看| 美女福利视频一区二区| 精品国产乱子伦一区二区三区 | 亚洲精品色播一区二区| 无码人妻久久久一区二区三区| 日本人真淫视频一区二区三区| 日本一区二三区好的精华液| 麻豆高清免费国产一区| 无码精品人妻一区二区三区免费看| 亚洲国产综合无码一区二区二三区 | 亚洲综合无码一区二区痴汉| 亚洲乱码一区二区三区在线观看| 午夜无码视频一区二区三区| 怡红院一区二区三区| 无码人妻啪啪一区二区| 97se色综合一区二区二区| 亚洲男女一区二区三区| 日本免费一区二区三区| 久久综合九九亚洲一区| 亚洲国产精品一区第二页| 久久国产免费一区| 无码乱人伦一区二区亚洲| 无码人妻一区二区三区免费n鬼沢| 熟妇人妻系列av无码一区二区| 国产成人无码AV一区二区 | 日本一区二区高清不卡| 卡通动漫中文字幕第一区| 视频一区二区中文字幕| 国产伦精品一区二区三区视频猫咪| 高清无码一区二区在线观看吞精| 国产一区二区三区在线免费观看 | 国产精品av一区二区三区不卡蜜| 69久久精品无码一区二区| 中文字幕AV无码一区二区三区| 中文字幕无码不卡一区二区三区| 国产成人午夜精品一区二区三区| 国产精品一区二区电影|