99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS373 COIN、代做Python設計程序

時間:2024-05-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DETECTION 
ASSIGNMENT
2024 Semester 1
1
Version 2.2Deadline: 3rd June 2024, 23:59pm
●In this assignment, you will write a Python code pipeline to automatically detect all the coins in the 
given images. This is an individual assignment, so every student has to submit this assignment! This 
assignment is worth 15 marks.
●We have provided you with 6 images for testing your pipeline (you can find the images in the 
‘Images/easy’ folder).
○Your pipeline should be able to detect all the coins in the image labelled with easy-level. This will 
reward you with up to 10 marks.
○For extension (up to 5 marks), try images labelled as hard-level images in the “Images/hard” folder.
○Write a short reflective report about your extension. (Using Latex/Word)
●To output the images shown on the slides for checking, you may use the following code:
fig, axs = pyplot.subplots(1, 1)
# replace image with your image that you want to output
axs.imshow(image, cmap='gray')
pyplot.axis('off')
pyplot.tight_layout()
pyplot.show()
2SUBMISSION
Please upload your submission as a zipped file of the assignment folder to the UoA 
Assignment Dropbox by following this link: 
https://canvas.auckland.ac.nz/courses/103807/assignments/3837**
●Don’t put any virtual environment (venv) folders into this zip file, it just adds to the size, and we 
will have our own testing environment.
●Your code for executing the main coin detection algorithm has to be located in the provided 
“CS3**_coin_detection.py” file!
●You can either put all of your code into that file, or use a modular structure with additional files 
(that, of course, have to be submitted in the zip file). However, we will only execute the 
“CS3**_coin_detection.py” file to see if your code works for the main component!
●The main component of the assignment (“CS3**_coin_detection.py”) must not use any non-built-in 
Python packages (e.g., PIL, OpenCV, NumPy, etc.) except for Matplotlib. Ensure your IDE hasn’t 
added any of these packages to your imports.
●For the extensions, please create a new Python source file called 
‘CS3**_coin_detection_extension.py’
; this will ensure your extension part doesn’t mix up with the 
main component of the assignment. Remember, your algorithm has to pass the main component 
first!
●Including a short PDF report about your extension.
●Important: Use a lab computer to test if your code works on Windows on a different machine 
(There are over 300 students, we cannot debug code for you if it doesn’t work!)
3easy_case_1 final output
easy_case_2 final output
easy_case_4 final output easy_case_6 final outputASSIGNMENT STEPS
5
1. Convert to greyscale and normalize
I. Convert to grey scale image: read input image using the ‘readRGBImageToSeparatePixelArrays()’ helper 
function. Convert the RGB image to greyscale (use RGB channel ratio 0.3 x red, 0.6 x green, 0.1 x blue), 
and round the pixel values to the nearest integer value.
II. Contrast Stretching: stretch the values between 0 to 255 (using the 5-95 percentile strategy) as described 
on lecture slides ImagesAndHistograms, p20-68). Do not round your 5% and 95% cumulative histogram 
values. Your output for this step should be the same as the image shown on Fig. 2.
Hint 1: see lecture slides ImagesAndHistograms and Coderunner Programming quiz in Week 10.
Hint 2: for our example image (Fig. 1), the 5_percentile (f_min) = 86 and the 95_percentile (f_max) = 1**.
Fig. 1: input Fig. 2: step 1 output
We will use this image 
(‘easy_case_1’) as an 
example on this slides2. Edge Detection
I. Apply a 3x3 Scharr filter in horizontal (x) and vertical (y) directions independently to get the edge maps (see 
Fig. 3 and Fig. 4), you should store the computed value for each individual pixel as Python float.
II. Take the absolute value of the sum between horizontal (x) and vertical (y) direction edge maps (see Hint 4). You 
do not need to round the numbers. The output for this step should be the same as the image shown on Fig. 5.
Hint 1: see lecture slides on edge detection and Coderunner Programming quiz in Week 11.
Hint 2: please use the 3x3 Scharr filter shown below for this assignment:
6
Hint 4: you should use the BorderIgnore option and set border 
pixels to zero in output, as stated on the slide Filtering, p13.
Hint 5: for computing the edge strength, you may use the 
following equation:
gm
(x, y) = |gx
(x, y)| + |gy
(x, y)|
Absolute grey level 
gradient on the 
horizontal direction
Absolute grey level 
gradient on the vertical 
direction
Edge map on 
horizontal and 
vertical
Fig. 5: Step 2 
output (gm
)
Fig. 4: Edge map 
(gy
) on vertical 
direction
Fig. 3: Edge map 
(gx
) on horizontal 
direction7
3. Image Blurring
Apply 5x5 mean filter(s) to image. Your output for this step should be the same as the image shown on 
Fig. 7.
Hint 1: do not round your output values.
Hint 2: after computing the mean filter for one 5x5 window, you should take the absolute value of your 
result before moving to the next window.
Hint 3: you should use the BorderIgnore option and set border pixels to zero in output, as stated on the 
slide Filtering, p13.
Hint 3: try applying the filter three times to the image sequentially.
Hint 4: see lecture slides on image filtering and Coderunner Programming quiz in Week 11.
Fig. 7: Step 3 output Fig. 6: Grayscale histogram for output from step 38
4. Threshold the Image
Perform a simple thresholding operation to segment the coin(s) from the black background. After 
performing this step, you should have a binary image (see Fig. 10).
Hint 1: 22 would be a reasonable value for thresholding for our example image, set any pixel value 
smaller than 22 to 0; this represents your background (region 1) in the image, and set any pixel value 
bigger or equal to 22 to 255; which represents your foreground (region 2) – the coin.
Hint 2: see lecture slides on image segmentation (p7) and see Programming quiz on Coderunner on 
Week 10.
Fig. 9: Step 3 output Fig. 10: Step 4 output Fig. 8: Grayscale histogram for output from step 39
5. Erosion and Dilation
Perform several dilation steps followed by several erosion steps. You may need to repeat the dilation 
and erosion steps multiple times. Your output for this step should be the same as the image shown on Fig. 
11.
Hint 1: use circular 5x5 kernel, see Fig. 12 for the kernel details.
Hint 2: the filtering process has to access pixels that are outside the input image. So, please use the 
BoundaryZeroPadding option, see lecture slides Filtering, p13.
Hint 2: try to perform dilation 3-4 times first, and then erosion 3-4 times. You may need to try a couple 
of times to get the desired output.
Hint 3: see lecture slides on image morphology and Coderunner Programming quiz in Week 12.
Fig. 11: Step 5 output
Fig. 12: Circular 5x5 kernel for 
dilation and erosion10
6. Connected Component Analysis
Perform a connected component analysis to find all connected components. Your output for this 
step should be the same as the image shown on Fig. 13.
After erosion and dilation, you may find there are still some holes in the binary image. That is 
fine, as long as it is one connected component.
Hint 1: see lecture slides on Segmentation_II, p4-6, and Coderunner Programming quiz in Week 
12.
Fig. 13: Step 6 outputWe will provide code for drawing the bounding box(es) 
in the image, so please store all the bounding box 
locations in a Python list called ‘bounding_box_list’, so 
our program can loop through all the bounding boxes 
and draw them on the output image.
Below is an example of the ‘bounding_box_list’ for our 
example image on the right.
11
7. Draw Bounding Box
Extract the bounding box(es) around all regions that your pipeline has found by looping over 
the image and looking for the minimum and maximum x and y coordinates of the pixels in the 
previously determined connected components. Your output for this step should be the same as 
the image shown on Fig. 14.
Make sure you record the bounding box locations for each of the connected components your 
pipeline has found.
Bounding_box_list=[[74, 68, 312, 303]]
A list of list
Bounding_box_min_x
Bounding_box_min_y Bounding_box_max_x
Bounding_box_max_y
Fig. 14: Step 7 outputInput
Drawing 
Bounding Box
Color to Gray Scale 
and Normalize
Edge 
Detection
Image 
Blurring Thresholding
Dilation and 
Erosion
Connected 
Component Analysis
12
Coin Detection Full Pipelineeasy_case_1 final output easy_case_2 final output
easy_case_4 final output easy_case_6 final outputEXTENSION
For this extension (worth 5 marks), you are expected to alter some parts of the pipeline.
●Using Laplacian filter for image edge detection
○Please use the Laplacian filter kernel on the right (see Fig. 15).
○You may need to change subsequent steps as well, if you decide to
use Laplacian filter.
●Output number of coins your pipeline has detected.
●Testing your pipeline on the hard-level images we provided.
○For some hard-level images, you may need to look at the size of the connected components to decide which 
component is the coin.
●Identify the type of coins (whether it is a **dollar coin, 50-cent coin, etc.). 
○Since different type of coins have different sizes, you may want to compute the area of the bounding box in 
the image to identify them.
●etc.
Submissions that make the most impressive contributions will get full marks. Please create a new 
Python source file called ‘CS3**_coin_detection_extension.py’ for your extension part, and include a 
short PDF report about your extension. Try to be creative!
14
Fig. 15: Laplacian filter kernel

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:INTE2401代寫、代做Java設計程序
  • 下一篇:CS 369代做、代寫Python編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                色偷偷一区二区三区| 制服丝袜亚洲精品中文字幕| 欧美激情综合五月色丁香小说| 麻豆成人久久精品二区三区红 | 制服丝袜亚洲色图| 美女一区二区在线观看| 久久九九国产精品| 色婷婷综合久久久中文一区二区 | 五月天视频一区| 欧美v日韩v国产v| 国产成人免费视频一区| 悠悠色在线精品| 日韩一区二区视频| av电影在线观看一区| 午夜久久久久久久久久一区二区| 欧美电视剧免费全集观看| 不卡视频在线观看| 日日夜夜免费精品视频| 国产色产综合产在线视频| 91免费在线视频观看| 美女在线一区二区| 中文字幕日韩av资源站| 日韩欧美中文字幕精品| www.欧美精品一二区| 美女久久久精品| 亚洲免费看黄网站| 久久综合九色综合97婷婷| 在线观看91视频| 国产精品18久久久久久久久| 一区二区三区久久久| 久久久99精品免费观看| 91精品国产综合久久福利| 91免费观看视频在线| 国产乱淫av一区二区三区| 亚洲福利一区二区| 亚洲欧洲综合另类| 国产精品天干天干在线综合| 欧美一区二区在线看| 91老司机福利 在线| 成人免费电影视频| 韩国精品主播一区二区在线观看| 亚洲无线码一区二区三区| 亚洲色图制服丝袜| 国产人妖乱国产精品人妖| 精品少妇一区二区三区在线播放| 欧美日韩国产综合一区二区三区| 99热在这里有精品免费| 国产成人鲁色资源国产91色综 | 欧洲国产伦久久久久久久| 成人av免费在线播放| 国产一区二区电影| 国产综合久久久久影院| 久久超碰97中文字幕| 老司机一区二区| 捆绑紧缚一区二区三区视频| 日韩av成人高清| 日韩二区在线观看| 日本不卡不码高清免费观看| 日本怡春院一区二区| 免费成人小视频| 日本成人在线网站| 久久www免费人成看片高清| 老司机精品视频导航| 蜜桃一区二区三区在线| 国内偷窥港台综合视频在线播放| 韩国成人精品a∨在线观看| 国产麻豆精品一区二区| 成人国产精品视频| 91最新地址在线播放| 欧美最猛性xxxxx直播| 欧美日韩国产免费一区二区| 5月丁香婷婷综合| 91精品国产色综合久久久蜜香臀| 欧美一区二区久久久| 欧美变态凌虐bdsm| 国产精品久久午夜| 亚洲国产视频一区二区| 男女性色大片免费观看一区二区| 狠狠色狠狠色合久久伊人| av不卡免费在线观看| 欧美自拍偷拍一区| 精品sm捆绑视频| 亚洲天堂成人网| 亚洲高清视频在线| 精品无人码麻豆乱码1区2区| 风间由美性色一区二区三区| 在线日韩av片| 国产农村妇女毛片精品久久麻豆| 亚洲乱码国产乱码精品精小说| 日本成人在线视频网站| 99精品久久只有精品| 日韩欧美你懂的| 自拍偷拍国产亚洲| 麻豆91在线看| 欧美日韩视频在线观看一区二区三区| 日韩欧美国产1| 亚洲精品视频在线看| 国产一区二区三区四区五区美女 | 欧美日韩国产一级| 国产嫩草影院久久久久| 免费日韩伦理电影| 91麻豆国产福利在线观看| 精品欧美乱码久久久久久| 亚洲女性喷水在线观看一区| 国产精品久久久久久久久久久免费看| 亚洲图片另类小说| 亚洲成人免费在线| 成人美女视频在线观看18| 7777精品久久久大香线蕉| 国产精品免费视频网站| 日韩电影一区二区三区| 一本色道久久综合亚洲精品按摩| 亚洲精品一区二区三区香蕉| 丝瓜av网站精品一区二区 | 在线播放91灌醉迷j高跟美女 | 欧美精品高清视频| 亚洲线精品一区二区三区| 成人一级片在线观看| 久久免费精品国产久精品久久久久| 亚洲午夜精品网| 在线精品视频小说1| 成人欧美一区二区三区1314| 国产成人免费网站| 久久久久成人黄色影片| 久色婷婷小香蕉久久| 欧美一级国产精品| 免费成人av在线播放| 日韩欧美一区二区在线视频| 亚洲电影第三页| 欧美午夜精品久久久久久超碰| 亚洲人精品一区| 色哦色哦哦色天天综合| 亚洲宅男天堂在线观看无病毒| 97久久精品人人澡人人爽| 国产精品国产三级国产普通话99 | 亚洲一区二区视频在线| 欧亚一区二区三区| 视频在线观看一区二区三区| 欧美电影在线免费观看| 日韩电影免费在线观看网站| 91麻豆精品国产91久久久久久| 另类中文字幕网| 国产偷国产偷精品高清尤物 | 欧美成人免费网站| 国产成人av福利| 国产精品福利影院| 一本色道综合亚洲| 免费高清在线一区| 国产精品沙发午睡系列990531| 成人97人人超碰人人99| 亚洲一区在线看| 精品伦理精品一区| 国产白丝精品91爽爽久久| 亚洲婷婷综合色高清在线| 欧美亚洲综合久久| 久久爱另类一区二区小说| 中文字幕中文字幕一区| 欧美日韩一区视频| 国产真实乱对白精彩久久| 亚洲欧美自拍偷拍色图| 666欧美在线视频| 99久久综合色| 欧美aaaaaa午夜精品| 中文字幕亚洲区| 日韩一区二区在线观看视频| av一区二区三区在线| 免费人成黄页网站在线一区二区| 国产亚洲欧美中文| 欧美午夜精品一区| 粉嫩绯色av一区二区在线观看| 亚洲一卡二卡三卡四卡无卡久久 | 91精品国产综合久久香蕉的特点| 国产精品主播直播| 日本亚洲电影天堂| 自拍视频在线观看一区二区| 久久亚洲一级片| 欧美高清一级片在线| av资源网一区| 激情综合色丁香一区二区| 一区二区高清在线| 欧美国产在线观看| 久久综合av免费| 在线观看91av| 色天使久久综合网天天| 国产丶欧美丶日本不卡视频| 久久精品国产一区二区三| 亚洲永久精品大片| 亚洲人午夜精品天堂一二香蕉| 国产日产欧美一区| 欧美一级免费观看| 欧美精品乱人伦久久久久久| 色欧美88888久久久久久影院| 国产成人av电影| 盗摄精品av一区二区三区| 国模一区二区三区白浆| 久久精品国产久精国产爱| 日韩经典中文字幕一区| 亚洲成人福利片| 日韩电影在线免费观看| 三级精品在线观看|