99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CMSE11475、代做Java/Python編程

時間:2024-04-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Financial Machine Learning (CMSE11**5)
Group Project Assignment
2023/2024
Content
Content................................................................................................................................................................................................. 1
Project Description......................................................................................................................................................................... 2
Individual Project: ......................................................................................................................................................................... 2
Project Deadline and Submission:........................................................................................................................................... 2
Project topic ................................................................................................................................................................................... 2
Project Hints ................................................................................................................................................................................... 2
Suggested Topics ............................................................................................................................................................................ 3
Forecasting Limit Order Book ............................................................................................................................................... 3
Forecasting Stock Volatility.................................................................................................................................................... 5
Forecasting High Frequency Cryptocurrency Return.................................................................................................. 7
Project Description
The project aims to practice the use of state-of-art machine learning models to analyse financial data and
solve financial problems.
Individual Project:
The project is individual project. No group is required. Students shall select their own topic with data to
complete their own research question alone. Cooperation and discussion with each other in the learning
process is encouraged but the project shall be completed by students’ own work, not a grouped work.
Project Deadline and Submission:
Individual projects run from 15
th January 2024 (week 1) to 29th March 2024 (week 10).
The deadline of submission is 14:00, Thursday, 4
th April 2024.
The submision of the project includes the project report and all implementation codes (do NOT submit any
data). The code shall work on the originally provided datasets. The report and the codes shall be ZIPPED to
one package for submission.
The report MUST follow the given template. All sections are required. The code MUST have complete and
detailed comments for every major logical section.
Project topic
Each student should individually choose a topic from the following suggested topics (with provided data) as
your own project. You are encouraged to revise/improve the project topic to make it more practical,
challenging, and suitable for your own research question. It’s fine if many students select the same suggested
topics as their projects as long as the codes and project reports are significantly distinctive.
The aim of this project is to apply at least THREE out of five techniques illustrated in the course (Deep Neural
Network; XGBoost; Cross-validation; Ensemble Model; Interpretability) to solve a financial problem.
Project Hints
All suggested topics are based on the computer lab examples with some changes and extensions. You can
easily find similar methods and models in the computer lab examples. Carefully studying those examples
and codes are crucial for understanding this course and complete the group coursework.
Suggested Topics
Forecasting Limit Order Book
Topic
Can we use deep neural network to forecast the high-frequency return at multiple horizon for stocks using
their limit order book information?
Data
10-level high frequency Limit Order Book of five stocks: Apple, Amazon, Intel, Microsoft, and Google on 21st
June 2012. Data size from 40MB to 100+MB. You can select to use part of the data.
Method
You may define the following features:are the ask and bid price of 10 levels (𝑖 = 1, … ,10), and w**7;w**5;
𝑖,𝑎
and w**7;w**5;
𝑖,𝑏
are the volume of 10 levels
(𝑖 = 1, … ,10). w**4;w**5;
𝐿𝑂w**; ∈ **7;40
2) Bid-Ask Order Flow (OF)
𝑏𝑂𝐹w**5;,𝑖 = {
w**7;w**5;
𝑖,𝑏
, 𝑖𝑓 𝑏w**5;
𝑖 > 𝑏w**5;−1
𝑖
w**7;w**5;
𝑖,𝑏 − w**7;w**5;−1
𝑖,𝑏
,𝑖𝑓 𝑏w**5;
𝑖 = 𝑏w**5;−1
𝑖
−w**7;w**5;
𝑖,𝑏
, 𝑖𝑓 𝑏w**5;
𝑖 < 𝑏w**5;−1
𝑖
𝑎𝑂𝐹w**5;,𝑖 = {
w**7;w**5;
𝑖,𝑎
, 𝑖𝑓 𝑎w**5;
𝑖 > 𝑎w**5;−1
𝑖
w**7;w**5;
𝑖,𝑎 − w**7;w**5;−1
𝑖,𝑎
,𝑖𝑓 𝑎w**5;
𝑖 = 𝑎w**5;−1
𝑖
−w**7;w**5;
𝑖,𝑎
, 𝑖𝑓 𝑎w**5;
𝑖 < 𝑎w**5;−1
𝑖
𝑂𝐹𝑖 ∈ **7;20
3) Order Flow Imbalance (OFI)
𝑂𝐹𝐼w**5; = 𝑏𝑂𝐹w**5;,𝑖 − 𝑎𝑂𝐹w**5;,𝑖
𝑂𝐹𝐼w**5; ∈ **7;20
The features can be defined as a vector
𝐗w**5; = (w**4;w**5;
𝐿𝑂w**;
, 𝑏𝑂𝐹w**5;,𝑖
, 𝑎𝑂𝐹w**5;,𝑖
,𝑂𝐹𝐼w**5;)
𝑇
The total dimension of feature vector 𝐗w**5;
is 40+20+10=70. 𝐗w**5; ∈ **7;70
.
The target is the the LOB mid-point return 𝐫w**5; over 𝐻 future horizons (𝐻 ≥ 1).
𝐫w**5; = (w**3;w**5;,1, … , w**3;w**5;,𝐻)
𝑇
This project is to estimate the function 𝑓(∙), that takes a sequence of historical 𝐗w**5; as input and generates
vector 𝐫w**5; as output:
𝐫w**5; = 𝑓(𝐗w**5;
,𝐗w**5;−1, 𝐗w**5;−2, … , 𝐗w**5;−𝑾)
Where 𝑾 is the look back window, 𝐫w**5; = (w**3;w**5;,1, … , w**3;w**5;,𝐻)
𝑇
𝑗 = 1, … , 𝐻.
This topic shall use LSTM as one of the potential models. You may try to train the LSTM model with the raw
70-dimension features 𝐗w**5; with different 𝑾. You may also extract the features with lower dimensions 𝑀 < 70
by autoencoder and then train the LSTM model using the extracted features with different 𝑾. You can provide
a comparison of those two methods.
This project shall also address the question of the feature importance.
Forecasting Stock Volatility
Topic
This topic comprises two subtopics, both pertaining to volatility forecasting. These subtopics are as follows:
1) Is stock volatility path-dependent?
2) Is stock volatility past-dependent?
To address these questions, you have the option to employ various machine learning models for forecasting
stock return volatility. This can be achieved either by utilising past returns (path-dependent) or past volatilities
(past-dependent).
Addressing either of the aforementioned sub-questions fulfils the coursework requirements for the
FML course. There is no need to complete work for both questions.
Data
In computer lab_3_1, we show the method to download stock prices from Yahoo Finance. This topic uses the
stock adjusted prices to calculate its volatility. You shall calculate the volatility as the standard deviation of the
Ү**; daily arithmetic returns, but it's essential to note that this volatility should be computed based on returns
within distinct, non-overlapping Ү**;-day intervals. Ү**; can be five or ten days. The following figure shows the
volatility calculation, where w**3;𝑖
is the daily return and ҵ**;𝑖
is the five-day volatility.
To successfully complete the coursework, you must choose a minimum of two stocks to assess one of the
aforementioned questions. The selection of these stocks should align with your personal interests.
Method
The topic is to investigate whether the volatility is path-dependent or past-dependent. But the length 𝐿 of
the path and past are unknown. You can select 𝐿 as 5, 10, 15, 20, or 40 days in the investigation and conclude
with a best 𝐿. Please decide by yourself what lengths 𝐿 to select in your coursework.
For the question of path-dependent, the input features contain the daily returns in past 𝐿 days:
𝐗w**5; = (w**3;w**5;−1, w**3;w**5;−2, w**3;w**5;−2, … , w**3;w**5;−𝐿
)
𝑇
The output is the volatility 𝑦w**5; = ҵ**;w**5;
. Please be aware that the returns in 𝐗w**5;
shall not be included in the
calculation of the output volatility 𝑦w**5;
. As illustrated in figure below, to forecast the volatility ҵ**;w**5;
, you can use
the daily returns w**3;w**5;−1, w**3;w**5;−2,…, w**3;w**5;−𝐿
in past 𝐿 days.
For the question of past-dependent, the input features contain the previous 𝐿 volatilities:
𝐗w**5; = (ҵ**;w**5;−1, ҵ**;w**5;−2, ҵ**;w**5;−3, … , ҵ**;w**5;−𝐿
)
𝑇
The output is the volatility 𝑦w**5; = ҵ**;w**5;
.
This topic shall use any of the machine learning models.
This topic may also answer what length 𝐿 generate the best forecasting results for the path- and pastdependence.
Forecasting High Frequency Cryptocurrency Return
Topic
This topic is to study how machine learning models perform in forecasting 15-minute ahead return in any of
the 14 popular cryptocurrencies.
Data
A dataset “cryptocurrency_prices.csv” of millions of rows of **minute frequency market data dating back to
2018 is provided for building the model. The dataset contains 14 popular cryptocurrencies, distinguished by
asset IDs. The details of the asset IDs and names are in the file “asset_details.csv”. You may choose any
cryptocurrencies to forecast. The “Weight” in the file is to calculate the whole market of cryptocurrency and
will be introduced in next section.
Asset_ID Weight Asset_Name
2 2.3978952** Bitcoin Cash
0 4.30**5093 Binance Coin
1 6.779921**7 Bitcoin
5 1.386294361 EOS.IO
7 2.079441542 Ethereum Classic
6 5.894402834 Ethereum
9 2.3978952** Litecoin
11 1.609437912 Monero
13 1.791759469 TRON
12 2.079441542 Stellar
3 4.**7192** Cardano
8 1.09**2289 IOTA
10 1.09**2289 Maker
4 3.555348061 Dogecoin
In the file “cryptocurrency_prices.csv”, the target has been calculated and provided as the column “Target”.
The target is derived from the log return over the future 15 minutes, for each cryptocurrency asset 𝑎 as the
residual of 15 minutes log return Targetw**5;
𝑎
. Noted that, in each row, the “Target” has already been aligned as
the future 15 minute return residual and is to be forecasted. (Target: Residual log-returns for the asset over
a 15 minute horizon.)
We can see the features included in the dataset as the following:
timestamp: All timestamps are returned as second Unix timestamps (the number of seconds elapsed since
1970-0**01 00:00:00.000 UTC). Timestamps in this dataset are multiple of 60, indicating minute-by-minute
data.
Asset_ID: The asset ID corresponding to one of the crytocurrencies (e.g. Asset_ID = 1 for Bitcoin). The mapping
from Asset_ID to crypto asset is contained in asset_details.csv.
Count: Total number of trades in the time interval (last minute).
Open: Opening price of the time interval (in USD).
High: Highest price reached during time interval (in USD).
Low: Lowest price reached during time interval (in USD).
Close: Closing price of the time interval (in USD).
Volume: Quantity of asset bought or sold, displayed in base currency USD.
VWAP: The average price of the asset over the time interval, weighted by volume. VWAP is an aggregated
form of trade data.
Method
You may define some additional features. For example, the past 5 minute log return, the past 5 minute
absolute log return, past 5 minute highest, past 5 minute lowest, etc.
You may try simple models, i.e., linear tree, and complex models, i.e., LSTM and compare their forecasting
performance.
If using LSTM, you may also study what length of the looking back window provide the best forecasting
performance.
In addition, the feature importance shall also be studied to show which features contribute to the stock relative
performance in the future the best.
Appendix
This appendix introduces how the target is calculated.
The log return at time w**5; for asset 𝑎 is calculated as:
𝑅w**5;
𝑎 = log (
𝑃w**5;+16
𝑎
𝑃w**5;+1
𝑎 )
As the crypto asset returns are highly correlated, forecasting returns for individual asset shall remove the
market signal from individual asset returns. Therefore, the weighted average cryptocurrency market return 𝑀w**5;
is defined as:
is the weight for each cryptocurrency and is defined in the column “Weight” in the file
“asset_details.csv”.
Then, a beta is calculated for each asset ҵ**;
Where the bracket &#**01;∙&#**02; calculate the rolling window average over the past 3750 minute windows.
Then, a regression residual is defined as the target for each asset Targetw**5;
BUT, you don’t need to do this calculation. The target values have been calculated and provided in the 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 







 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓大使館周末上班嗎 大使館上班時間是什么時候
  • 下一篇:QBUS6820代做、Python編程語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                不卡一卡二卡三乱码免费网站| 久久精品72免费观看| 日韩精品一区二区三区老鸭窝| jizzjizzjizz欧美| 国产一区二区主播在线| 日韩高清一级片| 奇米影视在线99精品| 午夜欧美视频在线观看| 亚洲狠狠爱一区二区三区| 亚洲愉拍自拍另类高清精品| 亚洲男人天堂一区| 一区二区三区日韩| 亚洲精品自拍动漫在线| 一区二区在线观看免费| 一区二区免费视频| 亚洲小说春色综合另类电影| 亚洲一区二区三区四区中文字幕| 一区二区三区国产豹纹内裤在线| 亚洲一区在线免费观看| 日韩精品一级二级| 久久激情五月激情| 床上的激情91.| 91色乱码一区二区三区| 欧美一a一片一级一片| 欧美精品一卡二卡| 久久亚区不卡日本| 国产精品美女久久久久高潮| 亚洲欧美激情一区二区| 亚瑟在线精品视频| 国产精品一区二区视频| 99re热视频这里只精品| 欧美裸体bbwbbwbbw| 日韩欧美一级二级| 国产精品久久久久影院| 亚洲一区二区在线免费观看视频| 日韩不卡手机在线v区| 国产高清不卡一区二区| 欧美在线三级电影| 久久在线观看免费| 亚洲精品少妇30p| 久久se这里有精品| 成人av免费在线| 欧美日韩国产色站一区二区三区| 日韩欧美国产1| 亚洲精品欧美综合四区| 日本成人在线看| 成人av网站在线观看| 91精品视频网| 亚洲三级在线播放| 美女网站色91| 在线观看国产日韩| 欧美激情在线一区二区| 午夜不卡在线视频| 色综合久久88色综合天天| 精品女同一区二区| 亚洲福利视频一区二区| 91浏览器入口在线观看| 精品国产乱码久久久久久蜜臀 | 色婷婷综合久久久| 久久久一区二区| 青青国产91久久久久久| 91在线播放网址| 国产欧美日韩久久| 九九精品视频在线看| 欧美日韩国产另类一区| 亚洲欧美日韩中文字幕一区二区三区 | 美女精品自拍一二三四| 欧美性色黄大片| 亚洲少妇最新在线视频| av影院午夜一区| 国产精品福利一区| 国产成人精品三级麻豆| 久久久天堂av| 国产精品综合一区二区三区| 精品久久人人做人人爰| 黑人精品欧美一区二区蜜桃| 欧美一区二区在线播放| 首页国产丝袜综合| 91精品国产高清一区二区三区蜜臀 | 午夜av区久久| 欧美日韩高清一区二区三区| 亚洲一二三区不卡| 欧美日韩一区二区三区四区五区| 亚洲视频在线观看三级| 99精品视频在线播放观看| 国产精品白丝在线| 91麻豆自制传媒国产之光| 国产精品系列在线| 色视频一区二区| 亚洲国产精品一区二区尤物区| 在线播放91灌醉迷j高跟美女| 丝袜亚洲精品中文字幕一区| 欧美一区二区三区爱爱| 久久成人羞羞网站| 国产欧美视频在线观看| 一道本成人在线| 视频一区二区中文字幕| 精品国产乱码久久| youjizz国产精品| 亚洲欧美日韩中文播放| 欧美色涩在线第一页| 日韩主播视频在线| 久久毛片高清国产| 97国产精品videossex| 亚洲bdsm女犯bdsm网站| 精品国产乱码久久| 色婷婷综合久久久久中文一区二区| 亚洲福利一区二区| 久久女同精品一区二区| 一本一道久久a久久精品| 日韩精品免费视频人成| 国产精品欧美综合在线| 91精品一区二区三区久久久久久 | 在线精品视频小说1| 久久狠狠亚洲综合| 亚洲精选视频免费看| 日韩精品一区二区三区swag| 一本久道久久综合中文字幕 | 国产欧美日韩在线| 欧美日韩免费电影| 豆国产96在线|亚洲| 香港成人在线视频| 国产精品免费aⅴ片在线观看| 欧美日韩成人在线| 99精品视频在线播放观看| 久久99精品一区二区三区| 亚洲欧美成人一区二区三区| 日韩色在线观看| 欧美中文字幕不卡| 成人av网址在线| 国产一区二区看久久| 亚洲国产美女搞黄色| 国产精品久久久久影院色老大| 日韩三级精品电影久久久| 欧美日韩亚洲丝袜制服| 色婷婷av一区二区三区大白胸| 国产激情精品久久久第一区二区| 日本不卡123| 天堂av在线一区| 亚洲综合视频网| 亚洲欧洲综合另类| 国产日韩欧美亚洲| 久久精品夜色噜噜亚洲a∨| 制服丝袜亚洲色图| 欧美日韩免费在线视频| 91麻豆视频网站| caoporm超碰国产精品| 国产不卡视频一区二区三区| 国产另类ts人妖一区二区| 寂寞少妇一区二区三区| 天天操天天干天天综合网| 亚洲一区二区三区四区在线观看 | 国产婷婷色一区二区三区四区| 日韩一级片网站| 欧美疯狂做受xxxx富婆| 欧美日韩亚洲国产综合| 色屁屁一区二区| 日本电影欧美片| 欧美性videosxxxxx| 精品婷婷伊人一区三区三| 色综合久久久久综合体| 色婷婷综合五月| 欧美系列一区二区| 欧美色电影在线| 欧美日韩国产一级| 91精品国产91久久久久久最新毛片 | 国产精品 日产精品 欧美精品| 国产v综合v亚洲欧| av不卡一区二区三区| 一本到不卡精品视频在线观看| 一本久道中文字幕精品亚洲嫩| 欧美性色黄大片| 日韩一区二区免费高清| 久久久亚洲午夜电影| 国产精品午夜在线观看| 亚洲精品老司机| 日韩国产精品大片| 国产精品66部| 在线免费精品视频| 欧美一区二区三区日韩视频| 国产午夜亚洲精品午夜鲁丝片 | 国产麻豆精品视频| 97精品国产露脸对白| 欧美日本高清视频在线观看| 日韩视频免费观看高清完整版 | 欧美久久久久免费| 久久久久久久久久久99999| 国产精品女主播在线观看| 亚洲一区二区三区激情| 奇米影视一区二区三区| 成人av片在线观看| 日韩一卡二卡三卡四卡| 亚洲三级在线免费| 久草在线在线精品观看| 91蝌蚪国产九色| 精品久久五月天| 日日摸夜夜添夜夜添精品视频| 粉嫩绯色av一区二区在线观看| 欧美三级中文字幕| 国产精品久久久久影院亚瑟|