99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CMSE11475、代做Java/Python編程

時間:2024-04-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Financial Machine Learning (CMSE11**5)
Group Project Assignment
2023/2024
Content
Content................................................................................................................................................................................................. 1
Project Description......................................................................................................................................................................... 2
Individual Project: ......................................................................................................................................................................... 2
Project Deadline and Submission:........................................................................................................................................... 2
Project topic ................................................................................................................................................................................... 2
Project Hints ................................................................................................................................................................................... 2
Suggested Topics ............................................................................................................................................................................ 3
Forecasting Limit Order Book ............................................................................................................................................... 3
Forecasting Stock Volatility.................................................................................................................................................... 5
Forecasting High Frequency Cryptocurrency Return.................................................................................................. 7
Project Description
The project aims to practice the use of state-of-art machine learning models to analyse financial data and
solve financial problems.
Individual Project:
The project is individual project. No group is required. Students shall select their own topic with data to
complete their own research question alone. Cooperation and discussion with each other in the learning
process is encouraged but the project shall be completed by students’ own work, not a grouped work.
Project Deadline and Submission:
Individual projects run from 15
th January 2024 (week 1) to 29th March 2024 (week 10).
The deadline of submission is 14:00, Thursday, 4
th April 2024.
The submision of the project includes the project report and all implementation codes (do NOT submit any
data). The code shall work on the originally provided datasets. The report and the codes shall be ZIPPED to
one package for submission.
The report MUST follow the given template. All sections are required. The code MUST have complete and
detailed comments for every major logical section.
Project topic
Each student should individually choose a topic from the following suggested topics (with provided data) as
your own project. You are encouraged to revise/improve the project topic to make it more practical,
challenging, and suitable for your own research question. It’s fine if many students select the same suggested
topics as their projects as long as the codes and project reports are significantly distinctive.
The aim of this project is to apply at least THREE out of five techniques illustrated in the course (Deep Neural
Network; XGBoost; Cross-validation; Ensemble Model; Interpretability) to solve a financial problem.
Project Hints
All suggested topics are based on the computer lab examples with some changes and extensions. You can
easily find similar methods and models in the computer lab examples. Carefully studying those examples
and codes are crucial for understanding this course and complete the group coursework.
Suggested Topics
Forecasting Limit Order Book
Topic
Can we use deep neural network to forecast the high-frequency return at multiple horizon for stocks using
their limit order book information?
Data
10-level high frequency Limit Order Book of five stocks: Apple, Amazon, Intel, Microsoft, and Google on 21st
June 2012. Data size from 40MB to 100+MB. You can select to use part of the data.
Method
You may define the following features:are the ask and bid price of 10 levels (𝑖 = 1, … ,10), and w**7;w**5;
𝑖,𝑎
and w**7;w**5;
𝑖,𝑏
are the volume of 10 levels
(𝑖 = 1, … ,10). w**4;w**5;
𝐿𝑂w**; ∈ **7;40
2) Bid-Ask Order Flow (OF)
𝑏𝑂𝐹w**5;,𝑖 = {
w**7;w**5;
𝑖,𝑏
, 𝑖𝑓 𝑏w**5;
𝑖 > 𝑏w**5;−1
𝑖
w**7;w**5;
𝑖,𝑏 − w**7;w**5;−1
𝑖,𝑏
,𝑖𝑓 𝑏w**5;
𝑖 = 𝑏w**5;−1
𝑖
−w**7;w**5;
𝑖,𝑏
, 𝑖𝑓 𝑏w**5;
𝑖 < 𝑏w**5;−1
𝑖
𝑎𝑂𝐹w**5;,𝑖 = {
w**7;w**5;
𝑖,𝑎
, 𝑖𝑓 𝑎w**5;
𝑖 > 𝑎w**5;−1
𝑖
w**7;w**5;
𝑖,𝑎 − w**7;w**5;−1
𝑖,𝑎
,𝑖𝑓 𝑎w**5;
𝑖 = 𝑎w**5;−1
𝑖
−w**7;w**5;
𝑖,𝑎
, 𝑖𝑓 𝑎w**5;
𝑖 < 𝑎w**5;−1
𝑖
𝑂𝐹𝑖 ∈ **7;20
3) Order Flow Imbalance (OFI)
𝑂𝐹𝐼w**5; = 𝑏𝑂𝐹w**5;,𝑖 − 𝑎𝑂𝐹w**5;,𝑖
𝑂𝐹𝐼w**5; ∈ **7;20
The features can be defined as a vector
𝐗w**5; = (w**4;w**5;
𝐿𝑂w**;
, 𝑏𝑂𝐹w**5;,𝑖
, 𝑎𝑂𝐹w**5;,𝑖
,𝑂𝐹𝐼w**5;)
𝑇
The total dimension of feature vector 𝐗w**5;
is 40+20+10=70. 𝐗w**5; ∈ **7;70
.
The target is the the LOB mid-point return 𝐫w**5; over 𝐻 future horizons (𝐻 ≥ 1).
𝐫w**5; = (w**3;w**5;,1, … , w**3;w**5;,𝐻)
𝑇
This project is to estimate the function 𝑓(∙), that takes a sequence of historical 𝐗w**5; as input and generates
vector 𝐫w**5; as output:
𝐫w**5; = 𝑓(𝐗w**5;
,𝐗w**5;−1, 𝐗w**5;−2, … , 𝐗w**5;−𝑾)
Where 𝑾 is the look back window, 𝐫w**5; = (w**3;w**5;,1, … , w**3;w**5;,𝐻)
𝑇
𝑗 = 1, … , 𝐻.
This topic shall use LSTM as one of the potential models. You may try to train the LSTM model with the raw
70-dimension features 𝐗w**5; with different 𝑾. You may also extract the features with lower dimensions 𝑀 < 70
by autoencoder and then train the LSTM model using the extracted features with different 𝑾. You can provide
a comparison of those two methods.
This project shall also address the question of the feature importance.
Forecasting Stock Volatility
Topic
This topic comprises two subtopics, both pertaining to volatility forecasting. These subtopics are as follows:
1) Is stock volatility path-dependent?
2) Is stock volatility past-dependent?
To address these questions, you have the option to employ various machine learning models for forecasting
stock return volatility. This can be achieved either by utilising past returns (path-dependent) or past volatilities
(past-dependent).
Addressing either of the aforementioned sub-questions fulfils the coursework requirements for the
FML course. There is no need to complete work for both questions.
Data
In computer lab_3_1, we show the method to download stock prices from Yahoo Finance. This topic uses the
stock adjusted prices to calculate its volatility. You shall calculate the volatility as the standard deviation of the
Ү**; daily arithmetic returns, but it's essential to note that this volatility should be computed based on returns
within distinct, non-overlapping Ү**;-day intervals. Ү**; can be five or ten days. The following figure shows the
volatility calculation, where w**3;𝑖
is the daily return and ҵ**;𝑖
is the five-day volatility.
To successfully complete the coursework, you must choose a minimum of two stocks to assess one of the
aforementioned questions. The selection of these stocks should align with your personal interests.
Method
The topic is to investigate whether the volatility is path-dependent or past-dependent. But the length 𝐿 of
the path and past are unknown. You can select 𝐿 as 5, 10, 15, 20, or 40 days in the investigation and conclude
with a best 𝐿. Please decide by yourself what lengths 𝐿 to select in your coursework.
For the question of path-dependent, the input features contain the daily returns in past 𝐿 days:
𝐗w**5; = (w**3;w**5;−1, w**3;w**5;−2, w**3;w**5;−2, … , w**3;w**5;−𝐿
)
𝑇
The output is the volatility 𝑦w**5; = ҵ**;w**5;
. Please be aware that the returns in 𝐗w**5;
shall not be included in the
calculation of the output volatility 𝑦w**5;
. As illustrated in figure below, to forecast the volatility ҵ**;w**5;
, you can use
the daily returns w**3;w**5;−1, w**3;w**5;−2,…, w**3;w**5;−𝐿
in past 𝐿 days.
For the question of past-dependent, the input features contain the previous 𝐿 volatilities:
𝐗w**5; = (ҵ**;w**5;−1, ҵ**;w**5;−2, ҵ**;w**5;−3, … , ҵ**;w**5;−𝐿
)
𝑇
The output is the volatility 𝑦w**5; = ҵ**;w**5;
.
This topic shall use any of the machine learning models.
This topic may also answer what length 𝐿 generate the best forecasting results for the path- and pastdependence.
Forecasting High Frequency Cryptocurrency Return
Topic
This topic is to study how machine learning models perform in forecasting 15-minute ahead return in any of
the 14 popular cryptocurrencies.
Data
A dataset “cryptocurrency_prices.csv” of millions of rows of **minute frequency market data dating back to
2018 is provided for building the model. The dataset contains 14 popular cryptocurrencies, distinguished by
asset IDs. The details of the asset IDs and names are in the file “asset_details.csv”. You may choose any
cryptocurrencies to forecast. The “Weight” in the file is to calculate the whole market of cryptocurrency and
will be introduced in next section.
Asset_ID Weight Asset_Name
2 2.3978952** Bitcoin Cash
0 4.30**5093 Binance Coin
1 6.779921**7 Bitcoin
5 1.386294361 EOS.IO
7 2.079441542 Ethereum Classic
6 5.894402834 Ethereum
9 2.3978952** Litecoin
11 1.609437912 Monero
13 1.791759469 TRON
12 2.079441542 Stellar
3 4.**7192** Cardano
8 1.09**2289 IOTA
10 1.09**2289 Maker
4 3.555348061 Dogecoin
In the file “cryptocurrency_prices.csv”, the target has been calculated and provided as the column “Target”.
The target is derived from the log return over the future 15 minutes, for each cryptocurrency asset 𝑎 as the
residual of 15 minutes log return Targetw**5;
𝑎
. Noted that, in each row, the “Target” has already been aligned as
the future 15 minute return residual and is to be forecasted. (Target: Residual log-returns for the asset over
a 15 minute horizon.)
We can see the features included in the dataset as the following:
timestamp: All timestamps are returned as second Unix timestamps (the number of seconds elapsed since
1970-0**01 00:00:00.000 UTC). Timestamps in this dataset are multiple of 60, indicating minute-by-minute
data.
Asset_ID: The asset ID corresponding to one of the crytocurrencies (e.g. Asset_ID = 1 for Bitcoin). The mapping
from Asset_ID to crypto asset is contained in asset_details.csv.
Count: Total number of trades in the time interval (last minute).
Open: Opening price of the time interval (in USD).
High: Highest price reached during time interval (in USD).
Low: Lowest price reached during time interval (in USD).
Close: Closing price of the time interval (in USD).
Volume: Quantity of asset bought or sold, displayed in base currency USD.
VWAP: The average price of the asset over the time interval, weighted by volume. VWAP is an aggregated
form of trade data.
Method
You may define some additional features. For example, the past 5 minute log return, the past 5 minute
absolute log return, past 5 minute highest, past 5 minute lowest, etc.
You may try simple models, i.e., linear tree, and complex models, i.e., LSTM and compare their forecasting
performance.
If using LSTM, you may also study what length of the looking back window provide the best forecasting
performance.
In addition, the feature importance shall also be studied to show which features contribute to the stock relative
performance in the future the best.
Appendix
This appendix introduces how the target is calculated.
The log return at time w**5; for asset 𝑎 is calculated as:
𝑅w**5;
𝑎 = log (
𝑃w**5;+16
𝑎
𝑃w**5;+1
𝑎 )
As the crypto asset returns are highly correlated, forecasting returns for individual asset shall remove the
market signal from individual asset returns. Therefore, the weighted average cryptocurrency market return 𝑀w**5;
is defined as:
is the weight for each cryptocurrency and is defined in the column “Weight” in the file
“asset_details.csv”.
Then, a beta is calculated for each asset ҵ**;
Where the bracket &#**01;∙&#**02; calculate the rolling window average over the past 3750 minute windows.
Then, a regression residual is defined as the target for each asset Targetw**5;
BUT, you don’t need to do this calculation. The target values have been calculated and provided in the 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 







 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓大使館周末上班嗎 大使館上班時間是什么時候
  • 下一篇:QBUS6820代做、Python編程語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                真实乱偷全部视频| 二区三区四区视频| 亚洲av无码片一区二区三区| 亚洲av无一区二区三区| 真实乱偷全部视频| www.av黄色| 国产人妻人伦精品1国产丝袜 | 中文字幕你懂的| 亚洲乱妇老熟女爽到高潮的片| 一级黄色免费看| 国产精品传媒在线观看| 精品国产亚洲av麻豆| 欧美啪啪小视频| 五月婷婷激情在线| 91精品国自产在线| 国产在线综合视频| 人妻无码一区二区三区免费| 中文在线最新版天堂| 中文字幕一区二区久久人妻网站| 91精品视频免费在线观看| 国产精品人人爽| 老熟妇仑乱一区二区av| 色婷婷在线影院| 亚洲性生活网站| 黄色片一区二区| 日韩精品一卡二卡| 亚洲欧美日本一区| 国产亚洲自拍av| 色一情一交一乱一区二区三区| 亚洲高清在线观看视频| 久久激情免费视频| 天天干天天插天天操| 91av在线免费| 可以免费在线观看的av| 中文字幕久久久久| 国产午夜免费福利| 小毛片在线观看| wwwwxxxx国产| 日韩av在线天堂| 亚洲天堂黄色片| 国产成人自拍一区| 日韩欧美黄色网址| www.综合色| 色噜噜日韩精品欧美一区二区| av首页在线观看| 青青草成人免费| japanese在线观看| 少妇一级黄色片| 国产精品成人网站| 亚洲av片在线观看| 好吊日免费视频| 在线精品视频播放| 国产在线视频卡一卡二| 亚洲妇女无套内射精| 国产日韩欧美视频在线观看| 午夜激情av在线| 国产三级小视频| 亚洲黄色小说在线观看| 内射后入在线观看一区| a级在线免费观看| 色综合免费视频| 国产精品福利电影| 中日韩黄色大片| 精品人妻一区二区三区蜜桃视频| 中文字幕精品无码亚| 欧美日韩久久婷婷| 成人免费毛片视频| 永久看片925tv| 欧产日产国产精品98| 国产精品18p| 最新中文字幕第一页| 欧美美女性生活视频| 国产乱淫a∨片免费观看| 最近中文字幕免费观看| 欧洲猛交xxxx乱大交3| 国产午夜精品久久久久| 亚洲日本中文字幕在线| 手机看片国产1024| 蜜臀99久久精品久久久久小说| 99在线观看免费| 在线播放av网址| 人妻体内射精一区二区三区| 国产中文av在线| wwwxxxx国产| 亚洲精品91在线| 无码人妻精品一区二区三区夜夜嗨 | 亚洲熟妇无码久久精品| 日本人妻熟妇久久久久久| 黄色一级片免费看| 成人羞羞国产免费图片| 亚洲欧美手机在线| 亚欧在线观看视频| 日韩黄色片网站| 玖玖爱视频在线| 九九热在线视频播放| 国产精品视频黄色| www.热久久| aaaaa级少妇高潮大片免费看| 亚洲视频一区在线播放| a在线视频播放观看免费观看| 亚洲免费不卡视频| 中文字幕精品三级久久久| 亚洲av片不卡无码久久| 色婷婷在线观看视频| 日韩精品视频播放| 欧美精品日韩在线| 全国男人的天堂网| 日本高清www| 久热这里只有精品在线| 国产一级片自拍| 国产一级片免费| 国产一级二级视频| 精品国产鲁一鲁一区二区三区| 国产香蕉精品视频| 精品久久久免费视频| 好吊色一区二区三区| 精人妻无码一区二区三区| 精品国产成人亚洲午夜福利| 精品人妻无码一区二区三区蜜桃一| 国产区二区三区| 久久99爱视频| 欧美一区二区三区爽爽爽| 少妇特黄一区二区三区| 午夜精品久久久久久久第一页按摩| 先锋av资源站| 亚洲精品在线观看av| 99精品在线看| 国产精品久久久午夜夜伦鲁鲁| 黑人巨大精品欧美| 噜噜噜在线视频| 天堂av资源在线| 中文字幕av久久爽| 97人妻精品一区二区免费| 成年人网站免费看| 国产午夜视频在线| 欧美黄色一级大片| 五月婷婷在线播放| 亚洲美女精品视频| 国产精品视频久久久久久| 久久艹这里只有精品| 日本少妇bbwbbw精品| 又色又爽又黄18网站| 97人妻精品一区二区三区免| 国产日产精品一区二区三区的介绍| 可以在线观看av的网站| 无码免费一区二区三区| 亚洲欧美天堂在线| 国产无套粉嫩白浆内谢| 欧美色图亚洲激情| 伊人久久综合视频| 不卡av电影在线| 97超碰在线免费观看| 国产毛片毛片毛片毛片| 人人干在线观看| 中文字幕国产在线观看| 国产激情视频在线播放| 欧美性猛交xxx乱久交| 中文字幕第3页| 国产伦精品一区二区三区精品 | 又色又爽的视频| 高清一区在线观看| 清纯粉嫩极品夜夜嗨av| 亚洲色图欧美视频| 精品欧美在线观看| 午夜久久久久久久久久| 国产精品www爽爽爽| 少妇人妻精品一区二区三区| 91精品国产乱码久久久| 美女被艹视频网站| 亚洲精品久久久久久久久久久久久久| 国产夫妻性爱视频| 日韩免费av网站| 九九热在线免费| 亚洲av色香蕉一区二区三区| 国产黄色片视频| 午夜一区二区视频| 国产精品20p| 香蕉视频久久久| 国产亚洲自拍av| 中文永久免费观看| 精品无码人妻一区| 中文字幕第一页在线播放| 国产一二三区av| 一区二区在线播放视频| 黄色av网站免费观看| 亚洲精品成人在线播放| 久久精品偷拍视频| 91精品视频免费在线观看| 日韩女同一区二区三区| 国产精品探花在线播放| 亚洲va在线观看| 久久久久久久高清| 91成人精品一区二区| 天堂网在线免费观看| 国产天堂第一区| 一二三四在线观看视频| 日韩三级视频在线| 精品久久久久一区二区| √资源天堂中文在线| 午夜精品久久久久99蜜桃最新版|