99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

BEE1038代做、代寫Python設計程序

時間:2024-03-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment [100 marks, weight: 30%]
BEE1038: Introduction to Data Science in Economics
Assignment Deadline: Thursday 28th March at 15:00 (GMT)
In this assignment, you will demonstrate your understanding and mastery of programming in
Python using data science tools.
What you will have learnt by the end of Week 6/7 should cover almost everything you will need,
and what you learnt is already enough to start working on some problems. If you are stuck then
read through the notebooks again. If you are still unsure, then have a look online. Google and
Stack OverFlow are your friends!
The grade of this assignment contributes 30% towards your overall grade in the course. The
following aspects need to be shown:
● Basic Python code and functions
● Manipulation and calculations on NumPy arrays and Pandas data frame
● Preparing and preprocessing data.
● Doing a basic plot, and changing plot markers, colors, etc.
● Improving and extending analysis.
● Ability to elaborate on your approach and explain your rationale when completing the
assignment.
Your submission will be a compressed file (.zip) containing the following files:
1. A copy of your Python script named your_name_solution.ipynb (done in Jupyter
Notebook). For example, my notebook file will be named cecilia_chen_solution.ipynb.
2. Same copy printed as a PDF, your_name_solution_code.pdf. Take a look at this link for
instruction on exporting Jupyter Notebok as PDF.
3. Three .png images of your final plots: one that replicates the plot in Problem 4 (p4.png),
one that replicates the plots in Problem 5 (H) (p5h.png), and those that show any
additional analysis in Problem 6 (p6a.png, etc.).
You must explain your approach and rationale using the markdown and/or comments in code.
Any block code or results without appropriate explanation will be panelized. Your scripts must
be sufficient to reproduce your answers to all questions and plots. You are responsible for
making sure that your Jupyter Notebook file will open without errors. Submissions that do not
open may receive a zero.
Collaboration & Misconduct: You are encouraged to think about this assignment in groups or ask
each other for help. If you do, you should do the following: 1) write your own code (no code
copying from others), 2) Report the names of all people that you worked with in your submission,
3) if you received help from someone, write that explicitly, 4) plagiarism of code or writeup will
not be tolerated; do not copy blocks of code in your answers, and 5) do not post your solutions
online (even after the release of your marks). For those who want to evidence your experience
to recruiters, make sure you share a private link to your project/work (or undiscoverable link). If
we can find your answers online anytime until September this year, you will be reported for
misconduct.
The University takes poor academic practice and academic misconduct very seriously and expects
all students to behave in a manner which upholds the principles of academic honesty. Please
make sure you familiarize yourself with the general guidelines and rules from this link1 and this
link2
.
Problem 1 [15 marks]
Write a function that accepts a number n as an input, and it returns n rows that look like the
following pattern. Run your function for n = 21 (the output below is for n=12 and n = 21).
1 http://as.exeter.ac.uk/academic-policy-standards/tqa-manual/aph/managingacademicmisconduct/
2
https://vle.exeter.ac.uk/pluginfile.php/1794/course/section/2**99/A%20Guide%20to%20Citing%2C%20Referencing
%20and%20Avoiding%20Plagiarism%20V.2.0%202014.pdf
 Output when n = 12 output when n = 21
Problem 2 [15 marks]
Solve all the following questions.
A. Write a function that you will call min_distance() that takes as input a list of integers and
returns the minimum (absolute) difference between any two numbers in that list.
For example, min_distance([5,9,1,3]) should return 2
While, min_distance([3,4,1,1]) should return 0
B. Using the min_distance() function you have created, create another function
max_min_distance() that takes a list of lists of integers as an input, and it returns the
maximum value among all the minimum distance values calculated on the inner-lists
(output of min_distance() for each inner-list).
For example, max_min_distance([[5,9,1,3],[3,4,1,1]]) should return 2
C. Demonstrate that your max_min_distance() function works well on the following input:
[[5,2,1,6],[10,0,4],[9,18,1],[100,100,27,9,18],[28,30]]
D. Set the NumPy random seed to 99 (Use the random generator method:
numpy.random.default_rng(seed)). Generate a **dimensional NumPy array of size 1000
consisting of random integers between 0 and 3000 (both included). Reshape this array
into a 2-dimensional array of 50 rows (i.e., 50x20). Test your function on this input.
E. Use the %timeit function to calculate the time for your max_min_distance() algorithm to
run on the input from D.
Problem 3 [20 marks]
A. Set the NumPy random seed to 120.
B. Create a 3x20x5 array (3 depths, 20 rows, 5 columns) of random integers between
-20 and 100 (both included) and print it.
C. For this part, consider the first depth of the array (i.e., first dimension is 0). Print the
number of elements that are strictly more than 60 in each column (of the first depth).
D. For this part, consider the third depth of the array (i.e., first dimension is 2). Print the
number of rows (of the third depth) that contain any positive values.
Problem 4 [20 marks]
In this problem, you need to reproduce the plot shown below, as accurately as possible, from
scratch. First, you will need to generate your x-axis data, and calculate the two series of your yaxis data using the simple functions shown in the legend.
Problem 5 [20 marks]
In this problem, you will use a dataset called harrypotter_dataset. Please follow the instructions
below for your data analysis.
A. Load the harrypotter_dataset.csv file in your notebook, and print the dataset. Print the
number of rows.
B. Print the column headings of the data set.
C. You will notice that column headings have an unnecessary leading space (e.g., “ Book
index”. Write a code to remove the leading space from every column name in the dataset,
replace the space between the column name with _, and convert all the column headings
to lower case. Save changes to your data frame. Re-run code in B to make sure it is solved
now. For example, the original column name is “ Book index”. It should be “book_index”
at the end.
D. Create a new column: ‘runtime_in_hours’ using the column ‘Runtime (in minutes)’. The
new column should have floating numbers (e.g., 150 minutes à 2.5 hours).
E. Create a new column: ‘is_same_date_uk_us’: boolean (True : “UK Movie release date” is
the same as “US Movie release date”, False : otherwise)
F. Calculate the following:
a. Suppose you chose to read one chapter from one of the books at random. What
is the probability that this chapter belongs to Book number 7? (hint: write a code
that divides the number of chapters in Book number 7 by the total number of
chapters)
b. Suppose you chose to watch one minute of one of the movies at random. What is
the probability that it belongs to one of the following movies 1st, 3rd, 5th, or 7th ?
c. What is the percentage of the movies that were released on the same date in both
the UK and the US?
G. Create a new data frame, df_nineties, which contains data (all columns) for books
released before 2000 i.e., ‘Book release year’ is strictly smaller than 2000.
H. Reproduce the following plot: you will get marks for reproducing the plot as accurately as
possible, taking into consideration the steps undertaken to reach the final figure.
Problem 6 [10 marks]
For this problem, use the same data from Problem 5 to perform compelling extra analysis.
Perhaps make use of the other columns in the harrypotter_dataset data set. You will get marks
if you find a compelling and interesting visualisation (one plot is enough, but you may produce
as many as you want if they are all tied into one main idea). Make sure you provide textual
description and/or analysis of the plot. You can also collect additional data to compliment your
analyses. For instance, you can add new columns to the dataset such as a cast list. Please be sure
to write down the source of your additional data collected.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:越南投資簽證年限(如何申請越南投資簽證)
  • 下一篇:ENGG1330代做、Python程序設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                91精品国产日韩91久久久久久| 国产精品不卡一区| 国产精品国模大尺度视频| 国产一区在线精品| 国产欧美日韩精品一区| 色综合视频在线观看| 午夜欧美一区二区三区在线播放| 欧美日韩亚洲综合一区| 黄一区二区三区| 中文字幕在线视频一区| 欧美激情中文字幕| 91亚洲精品久久久蜜桃| 99精品桃花视频在线观看| 亚洲6080在线| 中文字幕精品一区二区精品绿巨人| 91成人在线免费观看| 国产一区二区久久| 亚洲一区二区三区美女| 久久精品欧美日韩精品| 久久国产尿小便嘘嘘| 欧美日韩一区二区电影| 国模少妇一区二区三区| 亚洲国产毛片aaaaa无费看| 日韩三级视频中文字幕| 一本色道久久综合亚洲91| 激情五月婷婷综合网| 亚洲福利视频一区| 国产精品色在线| 欧美激情综合五月色丁香| 最好看的中文字幕久久| 国产乱码精品一区二区三| 中文字幕不卡在线| 国产久卡久卡久卡久卡视频精品| 欧美另类变人与禽xxxxx| 午夜欧美视频在线观看| 欧美激情一区不卡| 日韩久久久精品| 欧美久久婷婷综合色| av中文字幕不卡| 国产成人免费xxxxxxxx| 久久69国产一区二区蜜臀| 日韩vs国产vs欧美| 亚洲成av人片www| 一区二区欧美视频| 日韩毛片精品高清免费| 国产精品女上位| 欧美国产亚洲另类动漫| 91精品在线免费| 国产精品色婷婷久久58| 久久久综合九色合综国产精品| 欧美一区二区三区电影| 欧美精品第1页| 777奇米成人网| 日韩欧美国产一区二区在线播放| 欧美日韩精品一区二区三区 | 国产精品每日更新| 精品日韩一区二区| 日韩情涩欧美日韩视频| 欧美一区二区视频免费观看| 欧美一区2区视频在线观看| 91福利社在线观看| 欧美日韩亚洲国产综合| 欧美一区二区三区四区在线观看| 日韩区在线观看| 久久一夜天堂av一区二区三区| 日韩美女视频在线| 色狠狠色噜噜噜综合网| 欧美三电影在线| 国产91高潮流白浆在线麻豆 | 亚洲大片精品永久免费| 五月婷婷另类国产| 日韩国产在线观看一区| 久久精品久久精品| 国产成人av一区二区三区在线 | 国产三级欧美三级| 久久精品人人做| 日韩毛片精品高清免费| 亚洲精品国产高清久久伦理二区 | 久久―日本道色综合久久| 成人激情视频网站| 亚洲乱码国产乱码精品精的特点| 日韩欧美综合一区| 在线播放日韩导航| 亚洲欧美另类在线| 欧美高清在线视频| 精品成人私密视频| 欧美一级片免费看| 不卡一二三区首页| 久久成人18免费观看| 国产精品污网站| 婷婷综合另类小说色区| 麻豆91精品视频| 91麻豆免费看| 精品国产免费人成电影在线观看四季| 欧美日韩国产电影| 91久久一区二区| 北岛玲一区二区三区四区| 麻豆成人综合网| 日本aⅴ亚洲精品中文乱码| 亚洲激情图片qvod| 久久国产生活片100| 色婷婷激情一区二区三区| 久久久久国产一区二区三区四区| 亚洲视频你懂的| 国产高清亚洲一区| 精品久久久久久久久久久久久久久久久| 一本色道久久综合亚洲精品按摩| 欧美在线观看一二区| 另类小说一区二区三区| 亚洲欧美日本在线| 美国毛片一区二区| 日本一区二区三区电影| 精品1区2区在线观看| 中文字幕成人网| 久久精品日韩一区二区三区| 久久精品久久综合| 日韩天堂在线观看| 亚洲一区日韩精品中文字幕| 亚洲精品国产无天堂网2021| 亚洲欧洲国产日本综合| 国产精品自拍av| 欧美一区二区三区在线观看| 一区二区中文视频| 国产露脸91国语对白| 精品成人一区二区| 精品99久久久久久| 国产在线看一区| 久久亚洲一区二区三区明星换脸 | 日韩主播视频在线| 国产成人精品影视| 日韩色在线观看| 亚洲视频一二三| 成人免费精品视频| 中文字幕不卡的av| 国产呦萝稀缺另类资源| 欧美视频在线一区二区三区| 国产精品免费久久| 亚洲国产一二三| 性欧美大战久久久久久久久| 亚洲精品美国一| 亚洲大片精品永久免费| 麻豆91在线看| 91精品国产麻豆| 蜜臀久久99精品久久久画质超高清 | 丁香婷婷综合网| 国产日韩三级在线| 国产麻豆视频一区二区| 久久精品日产第一区二区三区高清版| 精品一区二区三区日韩| 99精品欧美一区二区三区小说 | 精品国产一区二区国模嫣然| 亚洲午夜一二三区视频| 成人丝袜高跟foot| 久久亚洲影视婷婷| 不卡视频一二三四| 亚洲最新视频在线观看| 欧美中文字幕亚洲一区二区va在线| 国产精品国产三级国产普通话99| 成人亚洲精品久久久久软件| 亚洲欧美一区二区久久 | 亚洲乱码日产精品bd| 欧美bbbbb| 亚洲国产精品精华液ab| 欧美在线三级电影| 亚洲观看高清完整版在线观看| 欧美精品在线一区二区| 国产麻豆视频一区| 亚洲综合成人在线视频| 精品捆绑美女sm三区| 成人av资源下载| 三级一区在线视频先锋| 国产无遮挡一区二区三区毛片日本| 99久久99久久久精品齐齐| 午夜a成v人精品| 亚洲欧洲成人精品av97| 国内精品免费**视频| 欧洲av在线精品| 亚洲人成7777| 欧美日韩国产首页| 成人一区二区三区| 久久国产精品一区二区| 一本久久a久久精品亚洲| 蜜臀av性久久久久av蜜臀妖精 | 国产婷婷一区二区| 欧美色图激情小说| 成年人午夜久久久| 国产伦精品一区二区三区免费迷| 日韩午夜电影av| 一区二区三区成人在线视频| 精品久久久久久久久久久久久久久| 91成人免费在线| 青青草国产成人av片免费| 亚洲裸体在线观看| 欧美精品乱码久久久久久按摩| 国产成人精品免费网站| 看电视剧不卡顿的网站| 欧美成人午夜电影| 99精品久久99久久久久| 欧美一区二区三区四区在线观看 | 国产精品久久久久久久久快鸭|