合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        COCMP5329 代寫(xiě)、代做 python 程序設(shè)計(jì)

        時(shí)間:2024-03-17  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        OCMP5**9 - Deep Learning
        Coding Assignment
         
        This is an individual assignment and should be completed independently.
         
        Due: End of day on Friday of Week 4
        1. Task description
        Based on the codes given in Tutorial: Multilayer Neural Network, you are required to accomplish a multi-class classification task on the provided dataset.
         
        In this assignment, you are expected to implement the modules specified in the marking table. 
         
        You must guarantee that the submitted codes are self-complete, and the newly implemented modules can be successfully run in common Python environment.
         
        You are allowed to use Deep Learning frameworks (e.g. PyTorch). You are encouraged not to use these deep learning frameworks if you want to challenge yourself for a deeper understanding. In this case, scientific computing packages, such as NumPy and SciPy, can be used to manually implement the auto-grad functions. 
         
        If you have any questions about the assignment, please contact the teaching team.
         
        The dataset can be downloaded from Canvas. There are 10 classes in this dataset. The dataset has been split into training set and test set.
         
        2. Instructions to hand in the assignment 
        2.1 Go to Canvas and upload the report. The report should include each member’s details (student ID and name). 
        2.2 The report must include a link of your code and data (e.g. a shared Google Cloud folder, so we can easily run it on Colab). Clearly provide instructions on how to run your code in the appendix of the report or include a readme.txt in your shared folder. 
        Don’t update the code/data any more after the submission. If the latest modified time of the shared folder is significantly late after the submission deadline, the whole submission will be taken as a late submission.
        2.3 The report must clearly show (i) details of your modules, (ii) the predicted results from your classifier on test examples, (iii) run-time, and (iv) hardware and software specifications of the computer that you used for performance evaluations. 
        2.4 There is no special format to follow for the report but please make it as clear as possible and similar to a research paper. 
        2.5 The use of ChatGPT or other AI tools is prohibited in the assignments. A plagiarism checker will be used.
         
        Late submission
        Suppose you hand in work after the deadline.
        If you have not been granted special consideration or arrangements:
        – A penalty of 5% of the maximum marks will be taken per day (or part) late. After 10 days, you will be awarded a mark of zero.
        – For example, if an assignment is worth 40% of the final mark and you are one hour late submitting, then the maximum marks possible would be 38%.
        – For example, if an assignment is worth 40% of the final mark and you are 28 hours late submitting, then the maximum marks possible marks would be 36%.
        – Warning: submission sites get very slow near deadlines.
        – Submit early; you can resubmit if there is time before the deadline. 
         
         
        3. Marking scheme
        Category    Criterion
        Report [50]    Introduction [5]
        - What’s the aim of the study?
        - Why is the study important?
             Methods [15]
         
        - Problem formulation and pre-processing (if any) [3]
        - The principle of different modules [4]
        - What is the design of your best model [4]
        - Implementation details and hyper-parameters [4]
             Experiments and results (with Figures or Tables) [20] 
         
        - Performance in terms of different evaluation metrics [5]
        - Extensive analysis, including hyperparameter analysis, ablation studies and comparison methods [5]
        - Meaningful discussion of the results [5]
        - Justification on your best model [5]
             Discussion and conclusion [5]
        - Meaningful conclusion and reflection
             Other [5]
        - At the discretion of the marker: for impressing the marker, excelling expectation, etc. Examples include fast code, using LATEX, etc.
        Modules [45]    More than one hidden layer [5]
             ReLU activation [5]
             Weight decay [5]
             Momentum SGD [5]
             Dropout [5]
             Softmax and cross-entropy loss [5]
             Mini-batch training [5]
             Batch normalisation [5]
             Other advanced operations (e.g., GELU, Adam) [5] 
        * Please make a highlight if you have one you think is advanced.  
        Code [5]    Code runs within a feasible time [5]
        Code Penalties [-]
             Well organised, commented and documented [5]
             Badly written code: [-20]
             Not including instructions on how to run your code: [-30]
             Late submission
        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
      1. 上一篇:菲律賓移民局的PWP多少錢(qián)(PWP申請(qǐng)流程)
      2. 下一篇:免簽入境泰國(guó)步驟(去泰國(guó)提早預(yù)定機(jī)票嗎)
      3. 無(wú)相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評(píng) 開(kāi)團(tuán)工具
        出評(píng) 開(kāi)團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話(huà)24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線(xiàn))
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話(huà)24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話(huà)24小時(shí)服務(wù)熱線(xiàn)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話(huà)2
        美的熱水器售后服務(wù)技術(shù)咨詢(xún)電話(huà)全國(guó)24小時(shí)客服熱線(xiàn)
        美的熱水器售后服務(wù)技術(shù)咨詢(xún)電話(huà)全國(guó)24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
      4. 上海廠(chǎng)房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        主站蜘蛛池模板: 一本一道波多野结衣AV一区| 一区二区三区福利视频| 亚洲AV无码国产一区二区三区 | 无码少妇一区二区性色AV| 国产日韩视频一区| 国产精品夜色一区二区三区| 国产美女av在线一区| 午夜AV内射一区二区三区红桃视| 久久精品一区二区三区日韩| 亚洲av片一区二区三区| 日本一区二区三区在线看| 波多野结衣一区二区| 亚洲视频一区在线观看| 亚洲一区动漫卡通在线播放| 久久久久人妻精品一区二区三区| 国精无码欧精品亚洲一区| 99久久精品国产免看国产一区| 天天看高清无码一区二区三区 | 国产观看精品一区二区三区| 精品国产一区二区三区香蕉事| 国产品无码一区二区三区在线| 99久久精品日本一区二区免费| AA区一区二区三无码精片| 国产电影一区二区| 无码少妇丰满熟妇一区二区| 无码一区二区三区爆白浆| 国产大秀视频一区二区三区| 韩国精品一区视频在线播放| 国产一区二区三区手机在线观看| 国产一区二区三区在线看片| 日韩精品一区二区三区在线观看| 日韩A无码AV一区二区三区| 国产美女口爆吞精一区二区| 久久青草国产精品一区| 精品一区精品二区制服| 狠狠做深爱婷婷久久综合一区| 午夜无码视频一区二区三区| 日本不卡一区二区三区| 亚洲一区二区三区丝袜| 精品人妻一区二区三区四区 | 亚洲午夜精品第一区二区8050|