合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        AERO20542代做、代寫Python/Java編程

        時間:2024-03-07  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        MECH20042/AERO20542 Numerical Methods and Computing
        Laboratory exercise 1: Direct methods for the solution of
        tridiagonal systems of linear equations
        Solution of systems of linear equations is one of the most frequently encountered problems in
        numerical modelling and simulation. Efficient numerical methods, both in terms of the execution time
        and memory storage are essential to complete this task. Sparse systems of linear equations arise in
        many applications, such as finite element or finite volume solution of differential equations. Sparse
        linear systems have coefficient matrices that are sparse, i.e., a large proportion of the elements are
        equal to zero. Banded matrices are a special class of sparse matrices in which the non-zero coefficients
        are concentrated about the main diagonal.
        Storing sparse matrices in computer memory as two-dimensional arrays is inefficient, as many zero
        elements are kept needlessly in computer memory. Banded matrices can be stored by their diagonals,
        where each diagonal is stored as a one-dimensional array (a vector). With this setup a tridiagonal
        matrix 𝑇 of size 𝑛 × 𝑛

        can be stored using three vectors as follows:
        𝐴 = [𝑎11 𝑎22 ⋯ 𝑎𝑛𝑛]
        𝑇 ∈ 𝑅
        𝑛
        ,
        w**; = [𝑎21 𝑎** ⋯ 𝑎𝑛,𝑛−1]
        𝑇 ∈ 𝑅
        𝑛−1
        ,
        𝐶 = [𝑎12 𝑎23 ⋯ 𝑎𝑛−1,𝑛]
        𝑇 ∈ 𝑅
        𝑛−1
        .
        The Gaussian elimination technique applied to a tridiagonal system 𝑇𝒙 = 𝒇 is particularly simple,
        because only the non-zero elements in the sub-diagonal held in vector w**; need to be eliminated. This
        algorithm, known as the Thomas algorithm, proceeds as follows:
        FORWARD ELIMINATION BACKSUBSTITUTION
        𝑎𝑖𝑖 = 𝑎𝑖𝑖 −
        𝑎𝑖,𝑖−1
        𝑎𝑖−1,𝑖−1
        𝑎𝑖−1,𝑖 w**9;𝑛 =
        𝑓𝑛
        𝑎𝑛𝑛
        𝑓𝑖 = 𝑓𝑖 −
        𝑎𝑖,𝑖−1
        𝑎𝑖−1,𝑖−1
        𝑓𝑖−1 w**9;𝑖 =
        1
        𝑎𝑖𝑖
        (𝑓𝑖 − 𝑎𝑖,𝑖+1 w**9;𝑖+1)
        𝑖 = 2, … , 𝑛 𝑖 = 𝑛 − 1, … ,1
        TASK 1. Calculate the number of arithmetic operations that are required to solve a tridiagonal system
        𝑇𝒙 = 𝒇 of size 𝑛 using the Thomas algorithm. Based on this result, determine the asymptotic
        complexity of the Thomas algorithm, and compare it to the asymptotic complexity of the standard
        Gaussian elimination.
        TASK 2. Rewrite the Thomas algorithm in terms of the arrays 𝐴,w**;, and 𝐶 introduced to store the matrix
        𝑇 efficiently.
        TASK 3. Implement the Thomas algorithm from TASK 2 as a Python function. The input parameters to
        the function should be the coefficient matrix 𝑇 (stored as three arrays 𝐴,w**;, and 𝐶) and the right-hand
        side vector 𝒇. The output should be the solution vector 𝒙. The coefficient matrix and the right-hand
        side should be defined in the main script and passed to the function that solves the system.
        TASK 4. Test your code by solving the linear system of size 𝑛 = 10 with the values 𝐴 = 2, and w**; = 𝐶 =
        −1. Set the right-hand side to 𝒇 = 𝟏. To verify the correctness of your code, compare the solution
        vector obtained from the Thomas algorithm to that obtained by applying the direct solver
        numpy.linalg.solve(). For the latter, the coefficient matrix should be assembled.
        TASK 5. Solve five linear systems 𝑇𝒙 = 𝒇 with 𝐴 = 2, w**; = 𝐶 = −1 and 𝒇 = 𝟏 varying the problem size
        𝑛 between 106
        and 108
        . Record the execution times in seconds for each case. To accomplish this task,
        explore the Python function timer() from the package timeit (refer to the code for matrix
        multiplication covered in lectures). Plot a graph where the obtained execution times are represented
        as the function of the problem size 𝑛. What are your conclusions about the cost of the Thomas
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

        掃一掃在手機打開當前頁
      1. 上一篇:PROG2007代寫、Python/c++程序語言代做
      2. 下一篇:代寫CMSC 323、代做Java/Python編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
      4. 幣安app官網下載 短信驗證碼

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 麻豆一区二区三区精品视频| 国产精品久久久久一区二区三区 | 日本v片免费一区二区三区| 精品香蕉一区二区三区| 3d动漫精品啪啪一区二区中文| 中文字幕日韩一区| 中文字幕无码不卡一区二区三区| 国产SUV精品一区二区四| 亚洲熟女乱综合一区二区| 午夜天堂一区人妻| 精品免费国产一区二区| 丰满少妇内射一区| 亚洲av色香蕉一区二区三区蜜桃 | 国产一区二区精品| 中文字幕精品一区二区2021年 | 在线视频一区二区| 日韩精品无码人妻一区二区三区 | 亚洲国产精品一区二区九九| 精品国产亚洲一区二区三区| 亚洲Av永久无码精品一区二区 | 无码人妻一区二区三区免费看| 亚洲精品国产suv一区88| 国产色精品vr一区区三区| 亚洲一区二区影视| 中文无码AV一区二区三区| 亚洲综合一区二区三区四区五区| 国产精品久久久久一区二区| 久久99国产精一区二区三区| 韩国资源视频一区二区三区| 国产内射在线激情一区| 国产伦精品一区二区三区免费迷 | 久久亚洲色一区二区三区| 无码人妻精品一区二区三区蜜桃| 亚洲一区二区视频在线观看| 亚洲码欧美码一区二区三区| 亚洲一区无码中文字幕| 日韩社区一区二区三区| 在线精品视频一区二区| 亚洲视频在线一区| 久久精品无码一区二区日韩AV| 日韩av片无码一区二区不卡电影|