合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做COMP9020 程序 Assignment 1

        時間:2024-02-28  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


        COMP**20 Assignment 1 2024 Term 1

          Due: Thursday, 29th February, 18:00 (AEDT)

        Submission is through inspera. Your assignment will be automatically submitted at the above due date. If you manually submit before this time, you can reopen your submission and con- tinue until the deadline.

        If you need to make a submission after the deadline, please use this link to request an extension: https://www.cse.unsw.edu.au/ cs**20/extension_request.html. Unless you are granted Special Consideration, a lateness penalty of 5% of raw mark per 24 hours or part thereof for a maximum of 5 days will apply. You can request an extension up to 5 days after the deadline.

        Answers are expected to be provided either:

        • In the text box provided using plain text, including unicode characters and/or the built-in formula editor (diagrams can be drawn using the built-in drawing tool); or

        • as a pdf (e.g. using LATEX) – each question should be submitted on its own pdf, with at most one pdf per question.

        Handwritten solutions will be accepted if unavoidable, but that we don’t recommend this ap- proach as the assessments are designed to familiarise students with typesetting mathematics in preparation for the final exam and for future courses.

        Discussion of assignment material with others is permitted, but the work submitted must be your own in line with the University’s plagiarism policy.

          Problem 1

        For x,y ∈ Z, we define the set

        Sx,y ={mx+ny:m,n∈Z}

        a) Provethatforallm,n,x,y,z∈Z,ifz|xandz|ythenz|(mx+ny).

        (33 marks)

         b) Prove that 2 is the smallest positive element of S4,6.

        Hint: To show that the element is the smallest, you will need to show that some values cannot be obtained.

        Use the fact proven in part (a)

        c) Find the smallest positive element of S−6,15.

        For the following questions let d = gcd(x, y) and z be the smallest positive number in Sx,y, or 0 if there are no positive numbers in Sx,y.

        d) ProvethatSx,y ⊆{n∈Z:d|n}.

        e) Prove that d ≤ z.

        f) Prove that z|x and z|y.

        Hint: consider (x%z) and (y%z)

        g) Prove that z ≤ d.

        h) Using the answers from (e) and (g), explain why Sx,y ⊇ {n ∈ Z : d|n}

        4 marks

        4 marks

        4 marks

        3 marks

        8 marks

        2 marks

        4 marks

        1

        4 marks

         

         Remark

        The result that there exists m, n ∈ Z such that mx + ny = gcd(x, y) is known as Bézout’s identity. Two useful consequences of Bézout’s identity are:

        • If c|x and c|y then c| gcd x, y (i.e. gcd(x, y) is a multiple of all common factors of x and y) • If gcd(x, y) = 1, then there is a unique w ∈ [0, y) such that xw =(y) 1 (i.e. multiplicative

        inverses exist in modulo y, if x is coprime with y)

        Problem 2 (16 marks) Proof Assistant: https://cgi.cse.unsw.edu.au/∼cs**20/cgi-bin/proof_assistant?A1

        Prove, using the laws of set operations (and any results proven in lectures), the following identities hold for all sets A, B, C.

           a) (Annihilation) A ∩ ∅ = ∅

        b) (A\C)∪(B\C) = (A∪B)\C

        c) A ⊕ U = Ac

        d) (DeMorgan’slaw)(A∩B)c =Ac∪Bc

        4 marks

        4 marks

        4 marks

        4 marks

        4 marks

        4 marks

        8 marks

        6 marks

         Problem 3

        Let Σ = {a, b}, and let

        (26 marks)

        d) Prove that:

        L2 ∩ L3 = (Σ=6)∗

        negative even number, prove that:

        L2L3 =Σ∗\{a,b}

        L2 = (Σ=2)∗

        and L3 = (Σ=3)∗.

        a) Give a complete description of Σ=2 and Σ=3; and an informal description of L2 and L3.

        b) Prove that for all w ∈ L1, length(w) =(2) 0.

        c) Show that Σ2 and Σ3 give a counter-example to the proposition that for all sets X,Y ⊆ Σ∗, (X ∩ Y)∗ = X∗ ∩ Y∗.

        e) Using the observation that every natural number n ≥ 2 is either even or 3 more than a non-

        2

        4 marks

         

        Advice on how to do the assignment

        Collaboration is encouraged, but all submitted work must be done individually without consulting someone else’s solutions in accordance with the University’s “Academic Dishonesty and Plagiarism” policies.

        • Assignments are to be submitted in inspera.

        • When giving answers to questions, we always would like you to prove/explain/motivate your answers. You are being assessed on your understanding and ability.

        • Be careful with giving multiple or alternative answers. If you give multiple answers, then we will give you marks only for your worst answer, as this indicates how well you understood the question.

        • Some of the questions are very easy (with the help of external resources). You may make use of external material provided it is properly referenced1 – however, answers that depend too heavily on external resources may not receive full marks if you have not adequately demonstrated ability/understanding.

        • Questions have been given an indicative difficulty level:

        Credit Distinction High distinction

        This should be taken as a guide only. Partial marks are available in all questions, and achievable

        by students of all abilities.

            Pass

         1Proper referencing means sufficient information for a marker to access the material. Results from the lectures or textbook can be used without proof, but should still be referenced.
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機打開當前頁
      1. 上一篇:CSC173代做、Java編程設計代寫
      2. 下一篇:莆田鞋正確拿貨方式:盤點十個莆田鞋拿貨渠道
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
      4. 幣安app官網下載 短信驗證碼

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 91国偷自产一区二区三区| 亚洲国产精品一区二区三区久久 | 国产一区二区三区精品久久呦| 成人精品视频一区二区三区尤物| 中文字幕久久亚洲一区| 另类ts人妖一区二区三区| 2018高清国产一区二区三区| 日韩人妻一区二区三区免费| 中文字幕日韩一区二区三区不| 国产成人一区二区三区电影网站| 亚洲第一区精品观看| 日韩一区二区三区在线精品| 亚洲一区中文字幕| 久久精品一区二区三区资源网| 国产午夜毛片一区二区三区 | 日本一区二区三区日本免费| 2014AV天堂无码一区| 精品国产乱子伦一区二区三区| 日本精品一区二区三区四区| 国产精品视频一区二区三区无码| 国产精品香蕉一区二区三区| 丝袜美腿高跟呻吟高潮一区| 日韩精品无码免费一区二区三区 | 一区 二区 三区 中文字幕| 亚洲AV综合色一区二区三区| 亚洲av乱码中文一区二区三区| 久久se精品一区精品二区国产| 亚洲一区中文字幕在线电影网| 国产99精品一区二区三区免费| 国产精品分类视频分类一区| 一区二区三区在线播放视频| 麻豆果冻传媒2021精品传媒一区下载| 一区二区三区在线观看视频| 亚洲熟女www一区二区三区| 国产视频一区在线观看| 无码精品蜜桃一区二区三区WW| 97精品一区二区视频在线观看| 中文字幕无码免费久久9一区9| 日韩精品一区二区三区中文版| 99久久人妻精品免费一区| 成人区人妻精品一区二区不卡视频 |