99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                成人美女视频在线看| 中文字幕一区二区三区不卡| 日韩欧美中文字幕公布| 免费看欧美美女黄的网站| 欧美日韩精品综合在线| 中文字幕第一页久久| 成人精品免费网站| 国产日韩亚洲欧美综合| 久久久www免费人成精品| 精品一区二区三区在线视频| 日韩一区二区免费高清| 国产高清亚洲一区| 久久在线观看免费| 蜜桃传媒麻豆第一区在线观看| 欧美成人精品高清在线播放| 麻豆成人在线观看| 日韩欧美一级片| 粉嫩高潮美女一区二区三区| 国产亚洲一区二区三区在线观看| 99精品国产热久久91蜜凸| 最近日韩中文字幕| 欧美三级乱人伦电影| 老司机精品视频导航| 欧美电影免费观看高清完整版| 1区2区3区欧美| 日韩一区二区三区四区| 国产在线视视频有精品| 有码一区二区三区| 精品视频在线视频| 卡一卡二国产精品| 亚洲一区视频在线| 日韩色在线观看| 色狠狠桃花综合| 日韩av电影免费观看高清完整版 | 欧美色大人视频| 亚洲影视在线播放| 国产女人aaa级久久久级 | 国产精品毛片高清在线完整版| 成人午夜私人影院| 亚洲二区视频在线| 亚洲伦理在线精品| 欧美一区二区三区四区高清| 丁香婷婷综合色啪| 日日夜夜一区二区| 一区二区三区四区高清精品免费观看| 制服视频三区第一页精品| 欧美亚洲一区二区在线| 91丨九色porny丨蝌蚪| 免费成人在线影院| 日韩成人一区二区三区在线观看| 国产精品嫩草久久久久| 精品国产青草久久久久福利| 欧美一级黄色录像| 欧美性xxxxxx少妇| 欧美肥大bbwbbw高潮| 97超碰欧美中文字幕| 亚洲国产日产av| 午夜精品国产更新| 亚洲另类春色国产| 亚洲自拍偷拍九九九| 国产精品视频一二| 欧美日韩不卡一区二区| 欧美一级久久久久久久大片| 欧美最新大片在线看| 在线观看91精品国产麻豆| 91亚洲精品久久久蜜桃| 成人v精品蜜桃久久一区| 91麻豆123| 成人av高清在线| 91亚洲精品乱码久久久久久蜜桃| 成人综合日日夜夜| 一区二区三区在线视频免费| 一区二区三区四区高清精品免费观看 | 色综合网色综合| 在线观看网站黄不卡| 丁香啪啪综合成人亚洲小说 | 日韩国产欧美在线视频| 麻豆国产欧美日韩综合精品二区 | 久久99精品国产91久久来源| 精东粉嫩av免费一区二区三区| 天堂蜜桃91精品| 久久av资源网| 国产在线视视频有精品| 国产成人精品综合在线观看| 在线观看亚洲a| 在线播放欧美女士性生活| 777奇米成人网| 91日韩精品一区| 欧美亚洲自拍偷拍| 国产不卡在线视频| 成人激情电影免费在线观看| 成人av中文字幕| 欧美一区二区三区四区五区| 精品国产麻豆免费人成网站| 中文字幕中文字幕一区二区| 亚洲欧洲综合另类在线| 亚洲一区二区偷拍精品| 国产电影一区在线| 91啪在线观看| 久久九九久久九九| 中文字幕在线不卡视频| 国产亚洲美州欧州综合国| 天天射综合影视| 国产一区二区伦理| 欧美日韩国产a| 久久久久久影视| 蜜臀久久99精品久久久久久9| 国产成人综合精品三级| 色欧美日韩亚洲| 国产婷婷一区二区| 亚洲免费在线电影| 国产99久久久国产精品潘金网站| av一区二区三区在线| 夫妻av一区二区| xnxx国产精品| 亚洲国产欧美一区二区三区丁香婷| 国产精品1024| 欧美日韩免费不卡视频一区二区三区 | 日韩精品一区二区三区在线观看 | 国产精品1区2区3区| 欧美中文字幕一区| 亚洲情趣在线观看| 国产一区二区美女诱惑| 欧美少妇xxx| 亚洲国产日日夜夜| av在线这里只有精品| 中文字幕视频一区二区三区久| 日本aⅴ免费视频一区二区三区| 日本aⅴ免费视频一区二区三区| 欧美久久久久免费| 亚洲精品乱码久久久久久久久| 国产麻豆9l精品三级站| 91.com视频| 国产性色一区二区| 蜜桃视频在线观看一区| 欧美视频精品在线| 亚洲最新视频在线观看| 精品视频色一区| 一区二区三区四区不卡在线 | 亚洲一区二区三区小说| 午夜亚洲国产au精品一区二区| 欧美日韩久久久一区| 亚洲一区在线观看网站| 欧美高清视频一二三区| 偷拍一区二区三区四区| 精品国产乱码久久久久久老虎| 麻豆国产欧美一区二区三区| 欧美一区二区三区系列电影| 国产一区二区三区在线观看免费 | 久久久91精品国产一区二区三区| 亚洲欧美中日韩| 欧美午夜精品久久久久久孕妇| 亚洲男人的天堂在线观看| 欧美日韩国产首页在线观看| 亚洲色图另类专区| 色综合久久天天| 欧美一区二区大片| 国产精品欧美极品| 成人午夜视频在线| 一区精品在线播放| 制服丝袜一区二区三区| 精品一区中文字幕| 亚洲欧美另类综合偷拍| 欧美午夜精品久久久久久超碰| 久久99精品久久久久久国产越南| 久久久av毛片精品| 成人av在线资源网站| 另类小说色综合网站| 久久综合久久综合久久| 91国产视频在线观看| 亚洲大尺度视频在线观看| 欧美激情一区在线观看| 欧美在线不卡一区| 免费成人在线观看视频| 国产欧美一区二区三区网站| 国产伦精品一区二区三区免费迷| 亚洲综合一二区| 精品美女一区二区| 欧美视频一区在线| 国产一区二区三区四| 午夜久久久久久| 久久欧美中文字幕| 亚洲成年人影院| 99re热这里只有精品免费视频| 亚洲一区二区在线播放相泽| 精品日韩在线一区| 风间由美一区二区av101| 午夜激情一区二区三区| 亚洲韩国精品一区| 久久久久久免费毛片精品| 91精品国产一区二区三区香蕉| 成人自拍视频在线| 国产乱码精品一品二品| 亚洲老司机在线| 中文字幕精品综合| 欧美精品黑人性xxxx| 日韩电影免费一区| 亚洲国产中文字幕在线视频综合| 国产日韩欧美高清在线| 久久综合色一综合色88|