99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日韩国产欧美在线视频| 中文字幕一区二区三区蜜月| 色吧成人激情小说| 免费久久99精品国产| 亚洲乱码国产乱码精品精的特点| 日韩免费成人网| 欧美日韩成人综合天天影院 | 色视频成人在线观看免| 国产成人av资源| 国产成人精品影视| 成人午夜电影久久影院| 高清在线不卡av| 不卡的看片网站| 成人美女在线观看| 91女人视频在线观看| 91久久精品网| 欧美三级三级三级| 日韩欧美亚洲国产另类| 久久精品亚洲精品国产欧美| 国产精品亲子伦对白| 最新国产成人在线观看| 亚洲图片自拍偷拍| 麻豆一区二区三| 国产毛片精品视频| 99视频精品在线| 欧美视频你懂的| 日韩免费视频一区| 国产精品乱码一区二区三区软件 | 国产一区二区h| 日韩一区二区在线免费观看| 欧美精品在线观看一区二区| 91精品久久久久久久久99蜜臂| 日韩一区二区免费视频| 国产日韩精品一区二区三区| 亚洲嫩草精品久久| 日本美女一区二区| 99在线热播精品免费| 欧美午夜免费电影| 久久精品夜夜夜夜久久| 亚洲综合成人在线视频| 韩国av一区二区三区| 色哟哟一区二区三区| 日韩欧美久久久| ●精品国产综合乱码久久久久| 亚洲国产精品久久人人爱| 韩国av一区二区三区在线观看| 色八戒一区二区三区| 久久精品视频一区二区三区| 亚洲一线二线三线久久久| 国产一区视频网站| 欧美日韩电影在线| 国产精品卡一卡二| 精品一二三四在线| 欧美群妇大交群中文字幕| 中文字幕巨乱亚洲| 蜜臀av国产精品久久久久| 色av成人天堂桃色av| 国产亚洲欧美一区在线观看| 亚洲v日本v欧美v久久精品| 国产91精品在线观看| 日韩写真欧美这视频| 亚洲免费伊人电影| 国产成人精品一区二| 日韩欧美一级片| 日本久久电影网| 久久人人爽人人爽| 天堂资源在线中文精品| 99精品在线免费| 国产日韩欧美精品一区| 狠狠色综合色综合网络| 欧美一区二区视频观看视频| 亚洲伊人伊色伊影伊综合网| 99re这里只有精品首页| 国产精品三级视频| 成人三级在线视频| 国产日韩精品久久久| 国产馆精品极品| 久久精品视频在线免费观看| 国产乱子伦视频一区二区三区| 欧美一级免费大片| 日韩电影在线一区二区| 欧美四级电影在线观看| 亚洲一区二区三区四区中文字幕| 91啦中文在线观看| 亚洲精品视频自拍| 在线国产电影不卡| 一区二区三区四区乱视频| 色婷婷香蕉在线一区二区| 亚洲综合一区二区三区| 欧美体内she精高潮| 亚洲国产视频网站| 欧美剧在线免费观看网站| 日韩成人dvd| 日韩久久免费av| 久久99精品一区二区三区| 2017欧美狠狠色| 国产一二精品视频| 国产精品伦一区| 91麻豆精品视频| 亚洲午夜精品在线| 日韩一级二级三级| 国产精品91一区二区| 国产欧美日本一区视频| 91香蕉视频mp4| 午夜视频在线观看一区| 亚洲欧洲制服丝袜| 欧美日韩成人综合天天影院| 精品一区二区久久久| 欧美韩国日本不卡| 在线精品亚洲一区二区不卡| 日本成人超碰在线观看| 久久久亚洲精品一区二区三区| 国产一区二区网址| 亚洲欧美另类久久久精品2019| 91国产成人在线| 国产综合色产在线精品| 亚洲另类一区二区| 日韩一二在线观看| 91一区一区三区| 久久精品国产第一区二区三区 | 中文字幕不卡一区| 色综合久久六月婷婷中文字幕| 久久国产精品第一页| 日韩高清电影一区| 欧美精品一级二级三级| 午夜精品久久一牛影视| 欧美一区二区三区免费在线看| 国产精品伊人色| 亚洲精品写真福利| 精品久久国产97色综合| 91美女在线视频| 国产精品一区二区久激情瑜伽| 一区二区三区成人| 欧美韩国一区二区| 日韩一区二区三区免费看| 99久久精品国产一区二区三区| 麻豆精品一区二区av白丝在线| 国产精品二区一区二区aⅴ污介绍| 91精品国产综合久久精品图片| av中文字幕不卡| 国产精品中文字幕一区二区三区| 亚洲综合色噜噜狠狠| 久久久国产精品午夜一区ai换脸| www精品美女久久久tv| 欧美色图12p| 99精品欧美一区二区蜜桃免费 | 亚欧色一区w666天堂| 国产精品天天摸av网| 欧美成人三级电影在线| 欧美精品久久一区二区三区 | 日韩欧美激情四射| 在线欧美日韩国产| 99久久婷婷国产综合精品| 久久av老司机精品网站导航| 石原莉奈在线亚洲三区| 亚洲一区二区三区四区的| 亚洲丝袜精品丝袜在线| 国产精品午夜在线观看| 久久综合九色综合97婷婷| 欧美精品久久久久久久多人混战| 欧美中文字幕一区二区三区| 99这里只有久久精品视频| 不卡一区在线观看| 成人高清在线视频| 99精品桃花视频在线观看| eeuss影院一区二区三区| 国产制服丝袜一区| 国产在线精品一区二区不卡了| 精品一区在线看| 国产尤物一区二区| 国产一区二区免费在线| 国内成人免费视频| 国产主播一区二区三区| 激情综合网av| 久99久精品视频免费观看| 老司机免费视频一区二区三区| 国内欧美视频一区二区| 国产乱子伦视频一区二区三区| 高清beeg欧美| 色网站国产精品| 精品视频免费看| 日韩欧美激情一区| 欧美国产乱子伦 | 91亚洲男人天堂| 欧美日韩国产一区| 2023国产精品| 国产精品护士白丝一区av| 亚洲综合精品久久| 久久国产剧场电影| 波多野结衣精品在线| 色乱码一区二区三区88| 日韩视频免费观看高清在线视频| 久久久久97国产精华液好用吗| 国产精品免费视频一区| 一区二区三区日韩欧美精品| 日韩精品一区第一页| 国产成人高清视频| 国产精品第一页第二页第三页| 亚洲在线一区二区三区| 久久99久久久欧美国产|