99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久久久国产精品一区二区| 国产精品久久久久毛片大屁完整版| 欧美性淫爽ww久久久久无| 精品99一区二区| 亚洲欧美日韩一区二区三区在线观看 | 99热这里只有成人精品国产| 六月丁香综合| 亚洲国产精品一区在线观看不卡 | 国产日韩欧美夫妻视频在线观看| av成人动漫| 欧美日韩精品免费观看| 亚洲黄色在线视频| 欧美成人一区在线| 亚洲国产婷婷| 欧美好吊妞视频| 亚洲日韩欧美视频一区| 欧美成人r级一区二区三区| 亚洲福利视频免费观看| 免费亚洲网站| 最近中文字幕日韩精品| 欧美电影美腿模特1979在线看| 影音先锋欧美精品| 欧美激情一二三区| 一区二区三区成人精品| 欧美网站大全在线观看| 亚洲男人的天堂在线观看 | 久久午夜激情| 91久久精品一区二区别| 欧美精选在线| 亚洲制服少妇| 国产亚洲精品v| 久久深夜福利| 亚洲精品美女91| 国产精品99免费看| 欧美专区在线观看| 亚洲欧洲精品一区二区三区不卡| 欧美极品aⅴ影院| 亚洲在线观看免费| 韩国女主播一区| 欧美老女人xx| 性做久久久久久| 亚洲国产91| 欧美午夜片在线观看| 欧美专区在线观看一区| 亚洲国内在线| 国产精品美女久久福利网站| 欧美一区2区三区4区公司二百| 永久免费毛片在线播放不卡| 欧美日韩国产美女| 久久精品综合网| 一区二区三区精密机械公司 | 亚洲精品久久| 国产美女在线精品免费观看| 美女黄网久久| 亚洲男人影院| 亚洲精品国产精品乱码不99| 国产精品高精视频免费| 久久精品av麻豆的观看方式| 亚洲免费成人| 国语自产精品视频在线看一大j8| 欧美另类一区二区三区| 久久精品国产综合| 136国产福利精品导航| 国产精品成人免费| 蜜桃视频一区| 欧美有码在线视频| 亚洲天堂av综合网| 亚洲欧洲日本国产| 黄色成人av在线| 欧美视频在线观看一区| 男同欧美伦乱| 久久国产加勒比精品无码| 在线亚洲免费视频| 亚洲美女在线看| 韩国一区二区三区在线观看| 国产精品久久久久久久午夜片| 欧美14一18处毛片| 久久久国产一区二区| 亚洲欧美日韩一区二区三区在线观看| 亚洲精品国产精品久久清纯直播| 国内精品美女在线观看| 国产欧美一区二区精品仙草咪| 欧美日韩国产在线播放| 欧美jizz19性欧美| 蜜桃av一区二区| 久久久久久成人| 久久国产色av| 久久经典综合| 久久不见久久见免费视频1| 亚洲一区中文| 亚洲无毛电影| 亚洲综合色自拍一区| 亚洲一区二区三区777| 日韩亚洲欧美一区二区三区| 亚洲精品乱码久久久久久| 亚洲第一在线综合网站| 1024亚洲| 91久久国产综合久久91精品网站| 在线免费观看日本一区| 亚洲国产高清aⅴ视频| 亚洲成色777777在线观看影院| 亚洲成在人线av| 亚洲黄色免费电影| 亚洲美女福利视频网站| 99在线精品观看| 亚洲伊人久久综合| 午夜免费电影一区在线观看| 亚欧成人在线| 久久免费视频一区| 欧美成人午夜视频| 欧美日韩国语| 国产精品美女www爽爽爽| 国产精品综合不卡av| 国产日韩亚洲欧美精品| 狠狠色狠狠色综合人人| 亚洲人成网站精品片在线观看| 亚洲精品极品| 亚洲欧美日韩爽爽影院| 久久久欧美精品| 欧美精品国产精品| 国产精品久久久久久久久久免费| 国产欧美一区二区在线观看| 精品动漫3d一区二区三区免费版| 亚洲国产精品va| 亚洲色图自拍| 久久久久久久激情视频| 欧美/亚洲一区| 欧美日韩综合视频网址| 国产一区导航| 亚洲理论电影网| 亚洲一区二区在线免费观看视频| 午夜视频在线观看一区| 久久久人成影片一区二区三区观看| 欧美激情黄色片| 国产精品自拍三区| 亚洲区免费影片| 欧美一区二区三区视频在线观看| 久久综合久久综合久久综合| 欧美日韩伊人| 亚洲高清123| 亚洲欧美另类在线| 欧美成人一区二免费视频软件| 欧美少妇一区| 亚洲高清影视| 欧美一区观看| 欧美色大人视频| 亚洲国产精品成人综合| 欧美亚洲视频一区二区| 欧美啪啪一区| 在线观看成人av| 亚洲欧美中文字幕| 欧美日韩日韩| 亚洲盗摄视频| 久久精品国产99| 国产精品黄视频| 亚洲欧洲一区二区在线观看| 欧美在线综合视频| 国产精品入口| 在线亚洲一区| 欧美人在线视频| 亚洲欧洲日韩综合二区| 久久久久青草大香线综合精品| 国产精品国产精品国产专区不蜜| 亚洲精品一区二区三区在线观看| 久久美女性网| 国产一区二区视频在线观看| 亚洲午夜久久久久久久久电影院| 欧美理论电影在线播放| 亚洲第一黄色| 久久综合电影一区| 激情综合色综合久久| 久久精品国产清自在天天线 | 国产精品日韩精品欧美在线| 亚洲最新中文字幕| 欧美国产综合| 亚洲人成人一区二区三区| 老司机免费视频一区二区| 黄色影院成人| 鲁大师成人一区二区三区| 激情婷婷亚洲| 久久精品一二三| 国产一区二区在线观看免费播放 | 国产精品白丝jk黑袜喷水| 日韩香蕉视频| 欧美日韩国产成人| 中文av一区特黄| 国产精品美腿一区在线看 | 亚洲深夜激情| 国产精品成人av性教育| 亚洲免费在线| 国产欧美一区二区视频| 久久国产精品亚洲77777| 激情欧美日韩一区| 免费观看日韩| 一本高清dvd不卡在线观看| 国产精品国码视频| 久久精品免费播放| 亚洲黄色一区| 国产精品高潮呻吟久久av无限| 午夜欧美理论片|