合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫(xiě)3D printer materials estimation編程

        時(shí)間:2024-02-21  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Project 1: 3D printer materials estimation
        Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
        definitions on the code.R file and write your report using report.Rmd. You must upload the following three
        files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
        in the README.md file.
        The main text in your report should be a coherent presentation of theory and discussion of methods and
        results, showing code for code chunks that perform computations and analysis but not code for code chunks
        that generate functions, figures, or tables.
        Use the echo=TRUE and echo=FALSE to control what code is visible.
        The styler package addin is useful for restyling code for better and consistent readability. It works for both
        .R and .Rmd files.
        The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
        attached in Learn as PDF files.
        Submission should be done through Gradescope.
        1 The data
        A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
        objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
        much material will be required to print the object.
        The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
        • Index: an observation index
        • Date: printing dates
        • Material: the printing material, identified by its colour
        • CAD_Weight: the object weight (in grams) that the CAD software calculated
        • Actual_Weight: the actual weight of the object (in grams) after printing
        Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
        and Material.
        2 Classical estimation
        Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
        Actual_Weight. We denote the CAD_weight for observation i by xi
        , and the corresponding Actual_Weight
        by yi
        . The two models are defined by
        • Model A: yi ∼ Normal[β1 + β2xi
        , exp(β3 + β4xi)]
        • Model B: yi ∼ Normal[β1 + β2xi
        , exp(β3) + exp(β4)x
        2
        i
        )]
        The printer operator reasons that random fluctuations in the material properties (such as the density) and
        room temperature should lead to a relative error instead of an additive error, leading them to model B as an
        approximation of that. The basic physics assumption is that the error in the CAD software calculation of
        the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
        convenient, but has no such motivation in physics.
        1
        Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
        containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
        specified model.
        Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
        to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
        optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
        function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
        and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
        best set of parameters found and the estimate of the Hessian at the solution found.
        First, use filament1_estimate() to estimate models A and B using the filament1 data:
        • fit_A = filament1_estimate(filament1, “A”)
        • fit_B = filament1_estimate(filament1, “B”)
        Use the approximation method for large n and the outputs from filament1_estimate() to construct an
        approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
        using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
        Comment on the differences to interpret the model estimation results.
        3 Bayesian estimation
        Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
        observation i:
        yi ∼ Normal[β1 + β2xi
        , β3 + β4x
        2
        i
        )].
        To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
        introduced, and the printer operator assigns independent prior distributions as follows:
        θ1 ∼ Normal(0, γ1),
        θ2 ∼ Normal(1, γ2),
        θ3 ∼ LogExp(γ3),
        θ4 ∼ LogExp(γ4),
        where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
        a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
        3.1 Prior density
        With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
        document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
        θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
        of the joint prior density p(θ) for the four θi parameters.
        3.2 Observation likelihood
        With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
        evaluates the observation log-likelihood p(y|θ) for the model defined above.
        3.3 Posterior density
        Define and document a function log_posterior_density with arguments theta, x, y, and params, which
        evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
        2
        3.4 Posterior mode
        Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
        with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
        evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
        return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
        the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
        to do maximisation instead of minimisation.
        3.5 Gaussian approximation
        Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
        mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
        θ. Use start values θ = 0.
        3.6 Importance sampling function
        The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
        the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
        was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
        distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
        densities.
        Define and document a function do_importance taking arguments N (the number of samples to generate),
        mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
        parameters that are needed by the function code.
        The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
        containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
        the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
        information.
        3.7 Importance sampling
        Use your defined functions to compute an importance sample of size N = 10000. With the help of
        the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
        pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
        Construct **% credible intervals for each of the four model parameters based on the importance sample.
        In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
        wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
        probability), generating a **row, 2-column data.frame to help structure the code.
        Discuss the results both from the sampling method point of view and the 3D printer application point of
        view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
        and plotting the importance log-weights to explain how they depend on the sampled β-values).
        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
      1. 上一篇:代寫(xiě)Dragonfly Network Diagram Analysis
      2. 下一篇:代寫(xiě)UDP Client-Server application java程序
      3. 無(wú)相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        出評(píng) 開(kāi)團(tuán)工具
        出評(píng) 開(kāi)團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士2號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士2號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士1號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士1號(hào)線(xiàn)
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) NBA直播 幣安下載

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        主站蜘蛛池模板: 亚洲国产欧美日韩精品一区二区三区| 国模无码人体一区二区| 国产高清在线精品一区| 亚洲狠狠狠一区二区三区| 亚洲国产美女福利直播秀一区二区| 乱子伦一区二区三区| 无码人妻一区二区三区免费手机| 亚洲.国产.欧美一区二区三区| 国产精品一区不卡| 中文字幕一区二区三| 亚洲综合一区二区| 国产av一区二区精品久久凹凸| 亚洲线精品一区二区三区影音先锋| 日韩人妻不卡一区二区三区| 亚洲AV网一区二区三区| 无码欧精品亚洲日韩一区夜夜嗨 | 亚洲变态另类一区二区三区| 国产一区二区三区免费视频| 国产色情一区二区三区在线播放 | 国产一区二区精品在线观看| 国精品无码A区一区二区| 亚洲日本乱码一区二区在线二产线| 国产成人综合亚洲一区| 国产亚洲综合一区柠檬导航| 日韩欧美一区二区三区免费观看| 亚洲一区日韩高清中文字幕亚洲| 无码福利一区二区三区| 一区二区三区在线观看视频| 99精品一区二区三区无码吞精| 日韩国产一区二区| 亚洲第一区二区快射影院| 无码人妻精品一区二| 3D动漫精品啪啪一区二区下载| 国产福利电影一区二区三区久久老子无码午夜伦不 | 国产亚洲3p无码一区二区| 久久久久人妻一区精品果冻| 国产日产久久高清欧美一区| 日韩精品成人一区二区三区| 国产伦一区二区三区免费| 精品国产一区二区三区色欲| 亚洲无线码在线一区观看|