合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做CS 532、Collaboration 代寫

        時間:2024-02-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        CS 5**: Homework Assignment 1
        Due: February 15th, 5:59PM
        Department of Computer Science
        Stevens Institute of Technology
        Collaboration Policy. Homeworks may be done individually or in teams of two. It is acceptable
        for students of different teams to collaborate in understanding the material but not in solving the
        problems. Use of the Internet is allowed, but should not include searching for previous solutions
        or answers to the specific questions of the assignment. I will assume that, as participants in a
        graduate course, you will be taking the responsibility of making sure that you personally
        understand the solution to any work arising from collaboration.
        Late Policy. 3% penalty for partial 24-hour period of delay.
        Submission Format. Electronic submission on Canvas is mandatory. Submit in a zip file
        contaning
        PDF file:
        • at most one page of text explaining anything that is not obvious. Also include the
        • richly documented source code (excluding libraries),
        • points used in the computation,
        • resulting images,
        • Instructions for running your code, including the execution command string that
        would generate your results.
        Separate directory for all code
        Separate directory for all generated imagery
        Problem 1. (50 points)
        The goal is for you to apply your knowledge of Homography estimation from a set of image
        features in order to perform a simple image warping task. In particular, you are expected to
        implement
        2
        a) The DLT algorithm for homography estimation using pixel feature locations (15pts)
        b) 2D Bilinear interpolation to render the output image (10 pts)
        c) The DLT algorithm for homography estimation using line feature locations (25pts)
        Download the image of the basketball court from the Canvas course website. Then, generate a
        blank 940 × 500 image and warp the basketball court only from the source image, where it
        appears distorted, to the new image so that it appears as if the new image was taken from directly
        above.
        Notes.
        • You are allowed to use image reading and writing functions, but not homography estimation
        or bilinear interpolations functions.
        • For P1a, Matlab, gimp or Irfanview (Windows only) can be used to click on pixels and
        record their coordinates.
        • For P1c, line coordinates you are free to use the same (four) corner points used in P1a (and
        define lines based on their coordinates) or determine new lines (e.g. lines in the image).
        Problem 2. (50 points) Object Centered motion
        The goal is for you to apply your knowledge of the pinhole camera model by controlling both the
        internal and external parameters of a virtual to generate a camera path that “locks-in” to foreground
        object (i.e. the foreground object should be and retain a constant size in the image throughout the
        entire capture sequence).
        In order to approximate a photorealistic image generation, you are provided a dense point cloud
        augmented with RGB color information. To obtain a rendered image you can use the provided
        rendering function PointCloud2Image, which takes as input a projection matrix and transforms the
        3D point cloud into a 2D image (see below for details). Your task will be to:
        1) Design a path that performs a half circle around (i.e. centered on) the foreground object (in this
        case a fish statue)
        2) Design a sequence of projection matrices corresponding to each frame of capture sequence
        3) Use the provided code to render each of the individual images (capture frames).
        The main challenges are
        3
        a) Setup the camera extrinsics and intrinsics to achieve the desired initial image position
        b) Design a suitable pose interpolation strategy
        Setup: Start the sequence using the camera’s original internal calibration matrix K (provided in the
        data.mat file) and position the camera in such a way that the foreground object occupies in the
        initial image a bounding box of approx 400 by 640 pixels (width and height) respectively.
        (Per reference, positioning the camera at the origin renders the foreground object within a
        bounding box of size 250 by 400 pixels).
        Notes: Implementation details & Matlab Code
        The file data.mat contains the scene of interest represented as a 3D point cloud, the camera internal
        calibration matrix to be used along with the image rendering parameters. All these variables are to
        be loaded into memory and need not be modified.
        The file PointCloud2Image.m contains the point cloud rendering function whose signature is {img
        =PointCloud2Image(P,Sets3DRGB,viewport,filter_size)}. P denotes a 3x4 projection matrix and
        should be the only parameter you will need to vary when calling this function, as the remaining
        parameters should remain constant.
        A simplified example of how to use the function is included in the file SampleCameraPath.m . The
        provided sample code does not does the circling effect, it only displaces the camera towards the
        scene. It will be your task to manipulate the camera internal and external parameters to get the
        desired result.
        The pointcloud data is contained in two variables: BackgroundPointCloudRGB and
        ForegroundPointCloudRGB, each comprising of a 6xN matrix. The first three rows describe the 3D
        coordinates of a point while the last three contain the corresponding RGB values. You may need to
        examine the ForegroundPointCloudRGB to determine the required camera positions. The pointcloud
        was generated from a single depthmap where the foreground object was masked out and its depth
        reduced by half.

        Figure 2. Birds eye view of the observed scene
        The generated video should be approximately 5 seconds in length at a frame rate of 5Hz.
        WMV will be the only format accepted. 

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機打開當前頁
      1. 上一篇:代寫CS2910、代做c/c++語言程序
      2. 下一篇:代寫6CCS3ML1、代做Python程序設計
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
      4. 幣安app官網下載 短信驗證碼

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 色狠狠一区二区三区香蕉蜜桃| 成人中文字幕一区二区三区| 人妻无码一区二区不卡无码av | 久久久人妻精品无码一区| 亚洲av一综合av一区| 一区二区福利视频| 国产成人精品一区二区三在线观看| 日本伊人精品一区二区三区| 国产亚洲一区二区三区在线| 久久精品无码一区二区三区日韩 | 色噜噜一区二区三区| 无码中文人妻在线一区 | 日本无卡码一区二区三区| 久久精品无码一区二区三区| 中文字幕在线观看一区| 国产成人精品久久一区二区三区av| 国产精品日韩一区二区三区| 精品国产高清自在线一区二区三区| 中文字幕日韩精品一区二区三区| 中文字幕一区二区三区在线观看| 国产在线无码视频一区二区三区| 成人一区二区免费视频| 国产自产V一区二区三区C| 国产一区二区三区久久| 无码人妻精品一区二区三区在线| 久久se精品一区二区| 无码国产精品一区二区免费式芒果| 国产精品亚洲一区二区三区在线| 久久中文字幕一区二区| 91精品一区二区| 国产福利酱国产一区二区| 无码人妻精一区二区三区| 国产一区视频在线免费观看| 亚洲国模精品一区| 国产av成人一区二区三区| 日本伊人精品一区二区三区| 无码人妻精品一区二区三区不卡| 精品不卡一区中文字幕| 色狠狠一区二区三区香蕉蜜桃| 久久久精品人妻一区亚美研究所| 亚洲午夜在线一区|