99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

B31SE編程代做、Java,c++程序代寫

時(shí)間:2024-02-17  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



School of Engineering and Physical Sciences
Electrical Electronic and Computer Engineering
B31SE Image Processing
Fundamentals of Image Processing with Matlab

Matlab scripts a01images.m and b01neighbours.m demonstrate how to load and
image, get some image information, display an image, and perform some simple manipulations
with an image. Run these scripts on various images. Use matlab help if necessary.

If you feel yourself comfortable with these simple image processing manipulations and matlab
programming in general, you can start working on the following programming assignment.

This assignment consists of four parts (tasks).

Task 1a (4 points): Nonlinear image filtering. Given a grey-scale image (, ), consider
the following non-linear iterative process:

where K is a positive constant. Note that the weights {} depend on the pixel positions (, )
and the iteration number n. After a certain number of iterations, you should get results similar
to those shown in the picture below: small-scale image details are removed while salient image
edges are sharpened.

Your first task is to implement the above non-linear iterative procedure, perform a number of
experiments (with different images, different numbers of iterations, and various values of
parameter k).

A matlab script simple_averaging.m implements the above iterative scheme in the
simplest case when all the weights are equal to one: = 1.

Task 1b (4 points): Low-light image enhancement. The above filtering scheme can be used
for enhancing low-light images. Given a colour (RGB) image
Let (, ) be obtained from (, ) by applying the image filtering scheme from Part 1
described above. An enhanced version of the original colour (, ) is generated by

where    is a small positive parameter used to avoid division by zero. You are expected to get
results similar to those shown below:
original enhanced
Task 2 (4 points): Image filtering in frequency domain.
This part is independent of Parts 1 and 2 and devoted to using the Fourier transform for image
filtering purposes.

Matlab function fftshift shifts the zero frequency component of an image to the centre of
spectrum

Try Fourier4ip.m matlab script and see how the Fourier transform can be used for image
processing and filtering purposes.

Your task is as follows. Image eye-hand.png is corrupted by periodic noise. Find the Fourier
transform of the image, visualise it by using log(abs(fftshift(.))), as seen below.

An image corrupted by periodic ripples The image in the frequency domain


The four small crosses in the frequency domain correspond to the frequencies behind the
periodic noise. Use impixelinfo to locate the frequencies. Construct a notch filter (a band-stop
filter, you can use small-size rectangles or circles to kill the unwanted frequencies) and use it
to remove/suppress the periodic noise while preserving the image quality. The Part 3 of your
report must include the reconstructed image and the filter used in the frequency domain.

Task 3a (5 points): Image deblurring by the Wiener filter.
Given a grey-scale image (, ), consider the following non-linear iterative process:

(, ) = ?(, ) ? (, ) + (, )
,
where f (x,y) is the latent (unblurred) image, g(x,y) is the degraded image, h(x,y) is a known
blurring kernel, ? denotes the convolution operation, and n(x,y) stands for an additive noise.
Applying the Fourier transform to both sides of the above equation yields

(, ) = (, )(, ) + (, )
.
The Wiener filter consists of approximating the solution to this equation by

(, ) = [
1
(, )
|(, )|2
|(, )|2 +
] (, ) =
?(, )
|(, )|2 +
(, ) (1)
,
where ?(, ) is the complex conjugate of (, ). Implement Weiner filter restoration
scheme (1) and test it for different types of blur kernels (motion blur and Gaussian blur). In
your implementation of the Wiener filter restoration scheme (1) you may need to use
H = psf2otf(h,size(g));
See https://uk.mathworks.com/help/images/ref/psf2otf.html for details. See also deblur.m.

Task 3b (5 points): Image deblurring by ISRA. The matlab script deblur.m contains
simple implementations of two popular image deblurring schemes, the Landweber method
and the Richardson-Lucy method (in addition, the matlab built-in implementation of the
Wiener filter is presented in deblur.m). In particular, the Richardson-Lucy method consists
of the following iterative process

0(, ) = (, ), +1(, ) = (, ) ? (?(?, ?) ?
(, )
(, ) ? ?(, )
)

where ? stand for the pixel-wise multiplication and the pixel-wise division is also used. Let us
consider the so-called ISRA (Image Space Reconstruction Algorithm) method

0(, ) = (, ), +1(, ) = (, ) ? (
?(?, ?) ? (, )
?(?, ?) ? ?(, ) ? (, )
)

.
Your task is to implement ISRA and use PSNR graphs (see again deblur.m) to compare
ISRA against the Wiener, Landweber, and Richarson-Lucy methods for the two types of
motion blur and Gaussian blur considered in deblur.m.

Remark. In this particular example of additive gaussian noise, advantages of the Richardson-
Lucy and ISRA methods are not revealed.


Task 4 (3 points): Image filtering in frequency domain.

Matlab script handwritten_digit_recognition_simple.m provides you with a simple
application of ANN for handwritten digit recognition. Your task is to modify the hidden layers
of the network in order to achieve the accuracy higher than 93%. You are not allowed to use
CNN layers. You are not allowed to use more than 100 neurons in total for all your hidden
layers. You are not allowed to modify the training options.

You can observe that a higher accuracy can be easily achieved if convolutional layers are used:
handwritten_digit_recognition.m. You can get more information about various layers used
in ANN from https://uk.mathworks.com/help/deeplearning/ug/create-simple-deep-
learning-network-for-classification.html


Please submit a single report describing briefly your results achieved for Tasks 1, 2,
3, and 4 of the assignment. Together with the report, please submit your matlab scripts
implementing your solutions to Tasks 1, 2, 3, and 4.
請(qǐng)加QQ:99515681  郵箱:99515681@q.com   WX:codehelp 

掃一掃在手機(jī)打開當(dāng)前頁(yè)
  • 上一篇:代寫ECON 323、C/C++,Java程序設(shè)計(jì)代做
  • 下一篇:代投EI會(huì)議、EI期刊 EI檢索入口查詢方法
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美日韩一区二区在线观看| 欧美精品日日鲁夜夜添| 91一区二区在线| 欧美精品亚洲一区二区在线播放| 精品国产乱码久久久久久影片| 国产视频亚洲色图| 亚洲激情图片一区| 国产一区二区不卡在线 | 久久久久久毛片| 亚洲精品久久久蜜桃| 亚洲丝袜自拍清纯另类| 亚洲尤物视频在线| 国产精品乡下勾搭老头1| 欧美日韩欧美一区二区| 国产精品视频一二三| 精品一二三四在线| 在线播放欧美女士性生活| 国产精品国产精品国产专区不蜜 | 国产校园另类小说区| 五月激情丁香一区二区三区| eeuss鲁片一区二区三区| 精品久久久久久亚洲综合网| 午夜精品成人在线视频| 色噜噜狠狠一区二区三区果冻| 国产亚洲精品中文字幕| 天堂影院一区二区| 欧美视频一区二区三区在线观看| 中文字幕不卡在线播放| 国产一区二区免费视频| 欧美哺乳videos| 日韩福利视频导航| 欧美久久久一区| 亚洲成人av电影| 欧美色图第一页| 亚洲高清免费在线| 91精品国产91久久久久久最新毛片 | 成人av网站在线观看免费| 久久久精品人体av艺术| 国产专区欧美精品| 久久久久久久久一| 国产自产高清不卡| 久久久亚洲综合| 国产一区二区三区免费播放| 精品国产欧美一区二区| 免费xxxx性欧美18vr| 日韩美女在线视频| 国产精品亚洲一区二区三区在线| 欧美大片国产精品| 国产老肥熟一区二区三区| 欧美韩国日本不卡| 91一区二区在线| 亚洲国产日韩精品| 欧美一级久久久久久久大片| 久久精品国内一区二区三区| 日韩欧美精品三级| 暴力调教一区二区三区| 亚洲品质自拍视频| 91麻豆精品国产91久久久 | 国产精品国产馆在线真实露脸| 国产91清纯白嫩初高中在线观看 | 99久久99久久精品免费观看| 亚洲精品美腿丝袜| 欧美一区二区三区在线看| 精品一区二区精品| 成人欧美一区二区三区1314| 日本精品一区二区三区四区的功能| 玉足女爽爽91| 日韩精品专区在线| 舔着乳尖日韩一区| 在线区一区二视频| 日本色综合中文字幕| 日韩限制级电影在线观看| 国产原创一区二区三区| 天天影视涩香欲综合网| 日韩精品专区在线| 99视频一区二区| 日韩avvvv在线播放| 日韩一区二区电影| av在线播放成人| 午夜国产不卡在线观看视频| www国产精品av| 在线亚洲+欧美+日本专区| 久久黄色级2电影| 综合久久久久久| 精品国产乱码久久久久久夜甘婷婷| 国产69精品久久99不卡| 性感美女久久精品| 国产精品国产三级国产三级人妇| 5566中文字幕一区二区电影| 白白色亚洲国产精品| 精品一区二区在线视频| 亚洲精品视频免费观看| 久久女同性恋中文字幕| 欧美猛男超大videosgay| www.亚洲人| 国产精品一品二品| 久久精品久久精品| 亚洲成人综合视频| 亚洲精品视频免费观看| 国产精品三级av| 久久这里只有精品6| 欧美精品久久久久久久多人混战| 99视频有精品| 成人夜色视频网站在线观看| 天堂蜜桃91精品| 亚洲第一搞黄网站| 一区免费观看视频| 欧美国产日产图区| 久久免费视频色| 精品国产免费视频| 欧美tk—视频vk| 4438亚洲最大| 欧美男同性恋视频网站| 欧美日韩一区久久| 欧美日本高清视频在线观看| 色8久久精品久久久久久蜜| 99久久精品国产一区二区三区 | 色综合久久六月婷婷中文字幕| 国产aⅴ综合色| 国产成人精品在线看| 国产成人精品亚洲777人妖| 国产在线播放一区| 成人一区二区三区| youjizz久久| 一本色道久久综合精品竹菊| av亚洲精华国产精华精华| 风间由美性色一区二区三区| 成人avav影音| 欧美系列在线观看| 91精品国产乱| 久久久久久久综合| 国产精品久久久久久福利一牛影视 | 日韩三级精品电影久久久| 欧美一区二区三区公司| 日韩精品一区二区三区视频| 精品久久人人做人人爰| 国产午夜精品久久久久久免费视 | 成人av网站免费观看| 一本大道久久a久久综合婷婷| 色综合久久久久综合体| 91成人国产精品| 日韩午夜在线观看| 国产欧美精品一区二区色综合| 国产精品你懂的在线欣赏| 亚洲精品网站在线观看| 视频一区欧美精品| 国产精品自拍一区| 91网站最新网址| 欧美一区二区视频在线观看2020 | 91精品免费在线| 国产精品乱码人人做人人爱 | 国产精品久久久久久久久快鸭| 亚洲精品欧美激情| 美女看a上一区| 99久久精品久久久久久清纯| 欧美丰满少妇xxxxx高潮对白| 国产日本欧洲亚洲| 天天影视网天天综合色在线播放| 国产精品夜夜爽| 欧美三级视频在线观看| 久久久www免费人成精品| 亚洲一区在线观看免费 | 免费在线观看一区| 91麻豆6部合集magnet| 精品理论电影在线| 洋洋成人永久网站入口| 国产激情精品久久久第一区二区| 欧美日韩精品一二三区| 中文字幕免费一区| 久久se精品一区二区| 欧美三级日韩三级| 国产精品久久久久永久免费观看 | a亚洲天堂av| 26uuu国产在线精品一区二区| 一区二区欧美国产| 丁香五精品蜜臀久久久久99网站| 欧美猛男超大videosgay| 国产精品萝li| 国产精品夜夜嗨| 日韩久久精品一区| 午夜精品爽啪视频| 欧美性一二三区| 中文字幕中文在线不卡住| 国产精品一区二区91| 欧美mv日韩mv亚洲| 爽好多水快深点欧美视频| 欧美亚洲一区三区| 亚洲一区国产视频| 91在线国产观看| 国产精品欧美极品| 成人午夜在线播放| 国产日韩欧美综合在线| 狠狠色狠狠色综合系列| 日韩午夜精品视频| 免费观看91视频大全| 欧美精品一二三四| 爽爽淫人综合网网站| 欧美高清视频在线高清观看mv色露露十八 | 五月天激情小说综合| 欧美日韩国产小视频|