99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

B31SE編程代做、Java,c++程序代寫

時(shí)間:2024-02-17  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



School of Engineering and Physical Sciences
Electrical Electronic and Computer Engineering
B31SE Image Processing
Fundamentals of Image Processing with Matlab

Matlab scripts a01images.m and b01neighbours.m demonstrate how to load and
image, get some image information, display an image, and perform some simple manipulations
with an image. Run these scripts on various images. Use matlab help if necessary.

If you feel yourself comfortable with these simple image processing manipulations and matlab
programming in general, you can start working on the following programming assignment.

This assignment consists of four parts (tasks).

Task 1a (4 points): Nonlinear image filtering. Given a grey-scale image (, ), consider
the following non-linear iterative process:

where K is a positive constant. Note that the weights {} depend on the pixel positions (, )
and the iteration number n. After a certain number of iterations, you should get results similar
to those shown in the picture below: small-scale image details are removed while salient image
edges are sharpened.

Your first task is to implement the above non-linear iterative procedure, perform a number of
experiments (with different images, different numbers of iterations, and various values of
parameter k).

A matlab script simple_averaging.m implements the above iterative scheme in the
simplest case when all the weights are equal to one: = 1.

Task 1b (4 points): Low-light image enhancement. The above filtering scheme can be used
for enhancing low-light images. Given a colour (RGB) image
Let (, ) be obtained from (, ) by applying the image filtering scheme from Part 1
described above. An enhanced version of the original colour (, ) is generated by

where    is a small positive parameter used to avoid division by zero. You are expected to get
results similar to those shown below:
original enhanced
Task 2 (4 points): Image filtering in frequency domain.
This part is independent of Parts 1 and 2 and devoted to using the Fourier transform for image
filtering purposes.

Matlab function fftshift shifts the zero frequency component of an image to the centre of
spectrum

Try Fourier4ip.m matlab script and see how the Fourier transform can be used for image
processing and filtering purposes.

Your task is as follows. Image eye-hand.png is corrupted by periodic noise. Find the Fourier
transform of the image, visualise it by using log(abs(fftshift(.))), as seen below.

An image corrupted by periodic ripples The image in the frequency domain


The four small crosses in the frequency domain correspond to the frequencies behind the
periodic noise. Use impixelinfo to locate the frequencies. Construct a notch filter (a band-stop
filter, you can use small-size rectangles or circles to kill the unwanted frequencies) and use it
to remove/suppress the periodic noise while preserving the image quality. The Part 3 of your
report must include the reconstructed image and the filter used in the frequency domain.

Task 3a (5 points): Image deblurring by the Wiener filter.
Given a grey-scale image (, ), consider the following non-linear iterative process:

(, ) = ?(, ) ? (, ) + (, )
,
where f (x,y) is the latent (unblurred) image, g(x,y) is the degraded image, h(x,y) is a known
blurring kernel, ? denotes the convolution operation, and n(x,y) stands for an additive noise.
Applying the Fourier transform to both sides of the above equation yields

(, ) = (, )(, ) + (, )
.
The Wiener filter consists of approximating the solution to this equation by

(, ) = [
1
(, )
|(, )|2
|(, )|2 +
] (, ) =
?(, )
|(, )|2 +
(, ) (1)
,
where ?(, ) is the complex conjugate of (, ). Implement Weiner filter restoration
scheme (1) and test it for different types of blur kernels (motion blur and Gaussian blur). In
your implementation of the Wiener filter restoration scheme (1) you may need to use
H = psf2otf(h,size(g));
See https://uk.mathworks.com/help/images/ref/psf2otf.html for details. See also deblur.m.

Task 3b (5 points): Image deblurring by ISRA. The matlab script deblur.m contains
simple implementations of two popular image deblurring schemes, the Landweber method
and the Richardson-Lucy method (in addition, the matlab built-in implementation of the
Wiener filter is presented in deblur.m). In particular, the Richardson-Lucy method consists
of the following iterative process

0(, ) = (, ), +1(, ) = (, ) ? (?(?, ?) ?
(, )
(, ) ? ?(, )
)

where ? stand for the pixel-wise multiplication and the pixel-wise division is also used. Let us
consider the so-called ISRA (Image Space Reconstruction Algorithm) method

0(, ) = (, ), +1(, ) = (, ) ? (
?(?, ?) ? (, )
?(?, ?) ? ?(, ) ? (, )
)

.
Your task is to implement ISRA and use PSNR graphs (see again deblur.m) to compare
ISRA against the Wiener, Landweber, and Richarson-Lucy methods for the two types of
motion blur and Gaussian blur considered in deblur.m.

Remark. In this particular example of additive gaussian noise, advantages of the Richardson-
Lucy and ISRA methods are not revealed.


Task 4 (3 points): Image filtering in frequency domain.

Matlab script handwritten_digit_recognition_simple.m provides you with a simple
application of ANN for handwritten digit recognition. Your task is to modify the hidden layers
of the network in order to achieve the accuracy higher than 93%. You are not allowed to use
CNN layers. You are not allowed to use more than 100 neurons in total for all your hidden
layers. You are not allowed to modify the training options.

You can observe that a higher accuracy can be easily achieved if convolutional layers are used:
handwritten_digit_recognition.m. You can get more information about various layers used
in ANN from https://uk.mathworks.com/help/deeplearning/ug/create-simple-deep-
learning-network-for-classification.html


Please submit a single report describing briefly your results achieved for Tasks 1, 2,
3, and 4 of the assignment. Together with the report, please submit your matlab scripts
implementing your solutions to Tasks 1, 2, 3, and 4.
請(qǐng)加QQ:99515681  郵箱:99515681@q.com   WX:codehelp 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫ECON 323、C/C++,Java程序設(shè)計(jì)代做
  • 下一篇:代投EI會(huì)議、EI期刊 EI檢索入口查詢方法
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          国产日韩精品一区观看| 国产日产精品一区二区三区四区的观看方式 | 男同欧美伦乱| 韩国av一区二区三区| 国产精品成av人在线视午夜片| 欧美sm视频| 欧美成黄导航| 欧美精品一区二区三区久久久竹菊| 国产精品麻豆成人av电影艾秋| 久久久久久穴| 国产精品九色蝌蚪自拍| 麻豆av福利av久久av| 99精品国产福利在线观看免费| 亚洲午夜伦理| 久久久久久亚洲精品杨幂换脸 | 在线观看91久久久久久| 亚洲精品国精品久久99热| 亚洲一级黄色| 免费的成人av| 国产精品美女久久久久久2018 | 欧美偷拍一区二区| 韩国一区二区三区在线观看| 亚洲美女诱惑| 久久免费国产精品| 欧美一级在线视频| 亚洲一区二区三区在线播放| 久久人人九九| 国产精品久久中文| 亚洲伦伦在线| 麻豆av一区二区三区| 国产精品素人视频| 亚洲精品一区二区三区不| 久久久成人网| 国产精品美女久久福利网站| 亚洲人体影院| 蜜桃av综合| 欧美—级高清免费播放| 欧美日韩国产麻豆| 国产精品综合网站| 一区二区三区高清不卡| 欧美 日韩 国产 一区| 国内自拍一区| 午夜一区在线| 国产精品久久久久久久久久三级| 亚洲欧洲午夜| 欧美暴力喷水在线| 尤物yw午夜国产精品视频| 欧美在线视屏| 国产一区二区欧美| 精品999网站| 久久精品国产一区二区三区免费看 | 亚洲香蕉在线观看| 欧美日韩精品一区二区在线播放| 亚洲大胆美女视频| 久久人人看视频| 欧美三级在线视频| 一区二区91| 国产精品国产福利国产秒拍| 亚洲午夜久久久| 国产精品中文在线| 先锋影音网一区二区| 国产精品久久久久久模特| 亚洲一区久久久| 欧美黄色一级视频| 亚洲美女免费精品视频在线观看| 欧美激情自拍| 国产精品99久久久久久久女警| 欧美日韩国产美女| 午夜精品视频网站| 国产一区二区三区在线播放免费观看 | 亚洲毛片在线观看| 国产精品va在线| 欧美一区二区三区免费大片| 欧美国产日韩视频| 激情久久综合| 欧美一区免费视频| 在线观看免费视频综合| 欧美连裤袜在线视频| 在线观看精品视频| 欧美久久综合| 亚洲香蕉成视频在线观看 | 久久久欧美一区二区| 亚洲盗摄视频| 国产精品白丝jk黑袜喷水| 欧美中文字幕视频在线观看| 亚洲成人在线观看视频| 欧美日韩精品伦理作品在线免费观看| 亚洲一区二区三区在线| 国内精品模特av私拍在线观看| 欧美大片一区| 亚洲欧美激情视频| 樱桃国产成人精品视频| 欧美视频一区二区三区在线观看| 欧美一区二区三区久久精品 | 国产婷婷色一区二区三区| 欧美成人精精品一区二区频| 亚洲欧美日本伦理| 国产精品美女www爽爽爽| 免费成人你懂的| 性色av一区二区三区在线观看 | 亚洲欧美日韩精品久久久| 亚洲电影欧美电影有声小说| 国产精品久久久久久久久婷婷| 久久久久久久久久看片| 亚洲免费影院| 一本大道久久a久久精二百| 国产一区二区三区观看| 欧美日韩精品一区| 免费成人黄色av| 欧美一区二区三区电影在线观看| 999亚洲国产精| 精品成人在线视频| 国产精品网红福利| 久久久久久久999| 亚洲欧美日本国产有色| 亚洲精品国产拍免费91在线| 一区二区在线观看av| 国产一区二区高清不卡| 国产精品影视天天线| 国产精品久久久久久影视| 欧美日韩国产经典色站一区二区三区| 久久久久久久网| 久久久国产亚洲精品| 久久精品视频导航| 欧美中文字幕在线播放| 午夜一区二区三区在线观看| 亚洲综合首页| 午夜精品亚洲| 性欧美xxxx大乳国产app| 亚洲综合日韩在线| 亚洲欧美在线播放| 亚洲高清中文字幕| 亚洲成人资源| 亚洲国产成人久久| 亚洲精品国产精品国自产观看| 亚洲国产视频直播| 亚洲人成人一区二区三区| 亚洲日本激情| 一区二区三区高清在线观看| 一本久久精品一区二区| 国产精品99久久99久久久二8| 国产日韩欧美在线一区| 国产午夜精品福利| 伊人久久大香线| 亚洲欧洲在线免费| 宅男噜噜噜66一区二区66| 亚洲午夜电影| 久久精品99久久香蕉国产色戒| 久久久激情视频| 欧美a级大片| 欧美特黄视频| 国产欧美日本一区视频| 欧美日韩精品免费观看视频| 国产精品草莓在线免费观看| 国产欧美日韩精品专区| 伊人夜夜躁av伊人久久| 亚洲欧洲视频在线| 亚洲一区欧美| 久久久久国产精品午夜一区| 欧美好骚综合网| 国产精品一区二区男女羞羞无遮挡| 国产精品综合| 亚洲黄色av| 亚洲在线视频网站| 免费成人小视频| 欧美黄色精品| 国产日韩欧美一区二区三区四区| 欧美日韩伦理在线免费| 国产精品人成在线观看免费| 一区二区三区中文在线观看| 99国产精品视频免费观看一公开| 午夜精品久久久久99热蜜桃导演| 久久综合99re88久久爱| 国产精品久久久久久久第一福利| 狠狠色综合一区二区| 中文高清一区| 免费日韩视频| 国产在线视频欧美一区二区三区| 亚洲毛片在线看| 久久人人97超碰精品888| 国产精品女人网站| 亚洲三级视频| 久久综合九色综合欧美狠狠| 欧美性一二三区| 亚洲国产精品999| 久久精品国产清高在天天线 | 国产精品欧美日韩一区| 亚洲国产日本| 久久久久久亚洲精品中文字幕 | 午夜久久久久久久久久一区二区| 欧美高清视频| 亚洲成色最大综合在线| 欧美在线日韩精品| 国产精品一二三四| 在线视频一区二区| 欧美日韩国产综合一区二区| 亚洲国产一区二区a毛片| 久久久免费精品视频| 国产一区激情| 久久久久久久一区|