99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

B31SE編程代做、Java,c++程序代寫

時(shí)間:2024-02-17  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



School of Engineering and Physical Sciences
Electrical Electronic and Computer Engineering
B31SE Image Processing
Fundamentals of Image Processing with Matlab

Matlab scripts a01images.m and b01neighbours.m demonstrate how to load and
image, get some image information, display an image, and perform some simple manipulations
with an image. Run these scripts on various images. Use matlab help if necessary.

If you feel yourself comfortable with these simple image processing manipulations and matlab
programming in general, you can start working on the following programming assignment.

This assignment consists of four parts (tasks).

Task 1a (4 points): Nonlinear image filtering. Given a grey-scale image (, ), consider
the following non-linear iterative process:

where K is a positive constant. Note that the weights {} depend on the pixel positions (, )
and the iteration number n. After a certain number of iterations, you should get results similar
to those shown in the picture below: small-scale image details are removed while salient image
edges are sharpened.

Your first task is to implement the above non-linear iterative procedure, perform a number of
experiments (with different images, different numbers of iterations, and various values of
parameter k).

A matlab script simple_averaging.m implements the above iterative scheme in the
simplest case when all the weights are equal to one: = 1.

Task 1b (4 points): Low-light image enhancement. The above filtering scheme can be used
for enhancing low-light images. Given a colour (RGB) image
Let (, ) be obtained from (, ) by applying the image filtering scheme from Part 1
described above. An enhanced version of the original colour (, ) is generated by

where    is a small positive parameter used to avoid division by zero. You are expected to get
results similar to those shown below:
original enhanced
Task 2 (4 points): Image filtering in frequency domain.
This part is independent of Parts 1 and 2 and devoted to using the Fourier transform for image
filtering purposes.

Matlab function fftshift shifts the zero frequency component of an image to the centre of
spectrum

Try Fourier4ip.m matlab script and see how the Fourier transform can be used for image
processing and filtering purposes.

Your task is as follows. Image eye-hand.png is corrupted by periodic noise. Find the Fourier
transform of the image, visualise it by using log(abs(fftshift(.))), as seen below.

An image corrupted by periodic ripples The image in the frequency domain


The four small crosses in the frequency domain correspond to the frequencies behind the
periodic noise. Use impixelinfo to locate the frequencies. Construct a notch filter (a band-stop
filter, you can use small-size rectangles or circles to kill the unwanted frequencies) and use it
to remove/suppress the periodic noise while preserving the image quality. The Part 3 of your
report must include the reconstructed image and the filter used in the frequency domain.

Task 3a (5 points): Image deblurring by the Wiener filter.
Given a grey-scale image (, ), consider the following non-linear iterative process:

(, ) = ?(, ) ? (, ) + (, )
,
where f (x,y) is the latent (unblurred) image, g(x,y) is the degraded image, h(x,y) is a known
blurring kernel, ? denotes the convolution operation, and n(x,y) stands for an additive noise.
Applying the Fourier transform to both sides of the above equation yields

(, ) = (, )(, ) + (, )
.
The Wiener filter consists of approximating the solution to this equation by

(, ) = [
1
(, )
|(, )|2
|(, )|2 +
] (, ) =
?(, )
|(, )|2 +
(, ) (1)
,
where ?(, ) is the complex conjugate of (, ). Implement Weiner filter restoration
scheme (1) and test it for different types of blur kernels (motion blur and Gaussian blur). In
your implementation of the Wiener filter restoration scheme (1) you may need to use
H = psf2otf(h,size(g));
See https://uk.mathworks.com/help/images/ref/psf2otf.html for details. See also deblur.m.

Task 3b (5 points): Image deblurring by ISRA. The matlab script deblur.m contains
simple implementations of two popular image deblurring schemes, the Landweber method
and the Richardson-Lucy method (in addition, the matlab built-in implementation of the
Wiener filter is presented in deblur.m). In particular, the Richardson-Lucy method consists
of the following iterative process

0(, ) = (, ), +1(, ) = (, ) ? (?(?, ?) ?
(, )
(, ) ? ?(, )
)

where ? stand for the pixel-wise multiplication and the pixel-wise division is also used. Let us
consider the so-called ISRA (Image Space Reconstruction Algorithm) method

0(, ) = (, ), +1(, ) = (, ) ? (
?(?, ?) ? (, )
?(?, ?) ? ?(, ) ? (, )
)

.
Your task is to implement ISRA and use PSNR graphs (see again deblur.m) to compare
ISRA against the Wiener, Landweber, and Richarson-Lucy methods for the two types of
motion blur and Gaussian blur considered in deblur.m.

Remark. In this particular example of additive gaussian noise, advantages of the Richardson-
Lucy and ISRA methods are not revealed.


Task 4 (3 points): Image filtering in frequency domain.

Matlab script handwritten_digit_recognition_simple.m provides you with a simple
application of ANN for handwritten digit recognition. Your task is to modify the hidden layers
of the network in order to achieve the accuracy higher than 93%. You are not allowed to use
CNN layers. You are not allowed to use more than 100 neurons in total for all your hidden
layers. You are not allowed to modify the training options.

You can observe that a higher accuracy can be easily achieved if convolutional layers are used:
handwritten_digit_recognition.m. You can get more information about various layers used
in ANN from https://uk.mathworks.com/help/deeplearning/ug/create-simple-deep-
learning-network-for-classification.html


Please submit a single report describing briefly your results achieved for Tasks 1, 2,
3, and 4 of the assignment. Together with the report, please submit your matlab scripts
implementing your solutions to Tasks 1, 2, 3, and 4.
請(qǐng)加QQ:99515681  郵箱:99515681@q.com   WX:codehelp 

掃一掃在手機(jī)打開當(dāng)前頁(yè)
  • 上一篇:代寫ECON 323、C/C++,Java程序設(shè)計(jì)代做
  • 下一篇:代投EI會(huì)議、EI期刊 EI檢索入口查詢方法
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲综合中文网| 亚洲精品在线网址| 少妇av一区二区| 亚洲女人在线观看| 国产精品suv一区二区三区| 国产精品乱码一区二区视频| 久操视频免费在线观看| 日韩欧美视频免费观看| 日韩精品久久久久久久酒店 | 久草视频免费播放| 无码人妻一区二区三区一| 国产91丝袜美女在线播放| 日本激情视频一区二区三区| 中文字幕男人天堂 | 国产精品51麻豆cm传媒| 日本一二三区视频| 国产成人手机在线| 午夜影院免费在线观看| 国产一区免费看| 中文字幕一区久久| 久久国产柳州莫菁门| 亚洲乱熟女一区二区| 老鸭窝一区二区| 亚洲视频在线观看一区二区| 日本黄色片视频| 国产九九九视频| 中文字幕一区二区人妻视频| 蜜臀久久精品久久久久| 亚洲视频一区二区三区四区| 久久久久亚洲av成人片| 国产大片中文字幕| 亚洲精品无amm毛片| 色网站免费观看| 久久香蕉精品视频| 国产又粗又猛视频免费| 丰满人妻一区二区三区免费视频| 伊人亚洲综合网| 神宫寺奈绪一区二区三区| 久久只有这里有精品| 国产人妻人伦精品1国产丝袜| 亚洲AV午夜精品| 日韩精品久久久久久久酒店 | 婷婷激情小说网| 日韩在线视频免费播放| 久久精品久久99| 久久无码精品丰满人妻| 久久老司机精品视频| av中文字幕免费在线观看| av资源在线免费观看| 粉嫩av一区二区夜夜嗨| 国产精品久久久久久在线| 国产探花精品一区二区| 黄色在线视频网| 农村老熟妇乱子伦视频| 免费黄色在线视频| 婷婷丁香激情网| 中文字幕av一区二区三区人妻少妇| 伊人久久久久久久久久久久久久| 中文字幕激情小说| av大全在线观看| 久久久久99精品成人片试看| 欧美一级一区二区三区| 午夜激情小视频| 91导航在线观看| 精品视频一二三区| 中文字幕美女视频| 国产三级精品三级在线| 久久久久久免费观看| 手机av在线网| 成人无码www在线看免费| 久久精品视频国产| 亚洲欧美黄色片| 精品少妇爆乳无码av无码专区| 欧美黄色激情视频| 91黄色在线视频| 欧美日韩大片在线观看| 在线视频 日韩| 精品人妻一区二区三区四区| 亚洲国产午夜精品| 久久久久久九九九九九| 99久久人妻无码中文字幕系列| 免费a在线观看播放| 丰满人妻一区二区三区四区| 日韩一区二区三区不卡视频| 国产无遮挡又黄又爽| 日韩精品aaa| 国产三级自拍视频| 一区二区小视频| 精品人妻aV中文字幕乱码色欲| 羞羞在线观看视频| 日韩 欧美 综合| 麻豆精品国产免费| 久久久久99精品成人| 国内精品偷拍视频| 国产真实乱在线更新| av在线网站观看| av片免费观看| 国产精品免费av一区二区| www.中文字幕在线观看| 中文字幕在线播放日韩| 中文字幕免费观看| 亚洲熟妇无码av| 91香蕉国产线在线观看| 亚洲天堂五月天| av在线免费看片| 精品无码av一区二区三区不卡| 插我舔内射18免费视频| 国产网站在线看| 中文字幕免费高清网站| 国产熟女精品视频| 久久久久99精品| 人人爽人人av| 亚洲h视频在线观看| 亚洲视频在线观看免费视频| 91视频免费观看网站| 国产精品久久久久久免费免熟| 国产一级在线观看视频| 久久av高潮av无码av喷吹| 日韩乱码一区二区三区| 五月天激情开心网| 成年网站在线播放| 日本美女视频一区| 国产精品揄拍100视频| 欧美一级特黄高清视频| 最新黄色av网址| 久久美女免费视频| 亚洲色图综合区| 久久成人国产精品入口| 五月婷婷中文字幕| 国产一区二区三区四区视频| 五月婷婷在线播放| 蜜桃av噜噜一区二区三区麻豆| 91麻豆制片厂| 亚洲色大成网站www| 最近中文字幕一区二区| wwwwxxxx国产| www.天天射.com| 亚洲一区日韩精品| 最近中文字幕一区二区| 午夜婷婷在线观看| 欧美黄色一区二区三区| 久久久久99精品成人| 国产精品视频123| 在线视频 日韩| 日本黄色小视频在线观看| 国产精品50页| 91精品国产高潮对白| 怡红院一区二区三区| 一区二区三区免费在线视频| 手机在线免费看毛片| 午夜性福利视频| 天堂成人在线视频| 手机在线观看免费av| 天天干天天操天天拍| 亚洲第一黄色片| 中文字幕在线综合| 亚洲国产综合久久| 天天射天天操天天干| 日本一区二区免费在线观看| 美国精品一区二区| 久久久久久久久97| 免费一级特黄特色大片| 免费精品一区二区| 久久久久亚洲av无码麻豆| 欧美一级视频免费| 婷婷在线免费观看| 中文字幕 人妻熟女| www.av麻豆| 蜜臀久久99精品久久久| 亚洲国产视频一区二区三区| 国产亚洲欧美久久久久| 午夜影院免费观看视频| 国产精品一级视频| 邪恶网站在线观看| 天堂在线资源视频| 亚洲av成人无码久久精品老人| 一区二区三区在线观看免费视频 | 久久久久中文字幕亚洲精品| 久热在线视频观看| 在线视频 中文字幕| 99热这里是精品| 精品99在线观看| 日韩 欧美 精品| 亚洲第一成人网站| av鲁丝一区鲁丝二区鲁丝三区| 国产精品成人aaaa在线| 蜜桃久久精品成人无码av| 色婷婷激情五月| 亚洲毛片欧洲毛片国产一品色| 国产精品免费av一区二区| 日本在线观看视频网站| 亚洲婷婷综合网| 精品人妻av一区二区三区| 中文字幕精品视频在线观看| xxxx日本黄色| 日韩乱码在线观看| 国产精品30p| 亚洲成人黄色片| 日本天堂在线播放| 2019男人天堂|