99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Spatial Networks for Locations

時間:2024-02-16  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Background
Spatial Networks for Locations
 Locations are connected via roads (we assume traders can travel in both
directions!)  These locations form a spatial network.  As traders used horses for travelling, they couldn’t travel too far!
Pottery Trade
Pottery trade was very active at that times. Each location had its own supply and demandfor pottery. The supply and demand were communicated by traders who also formed their
own networks. They also potentially communicated the prices, but in these project wewill
disregard this information.
Social Networks for Traders
Traders living in some locations know each other and exchange information about supplyand demand via postal services. These traders for a social network.
How to Represent Networks
Each network can be presented as a graph. In this project, we will focus on undirectedgraphs: both social and spatial networks can be represented as graphs:
1. Spatial networks: nodes correspond to locations, and edges —to roads betweenthem (both directions)
2. Social networks: nodes correspond to traders, and edges connect those who
know each other (communicate)
Networks/graphs can be very different!
Project Questions
1. Represent road maps and trader networks as graphs
2. Find the shortest path between any two locations (return the shortest path andthedistance)
3. (Static traders) Find the best trading options for a particular trader residing in aparticular location. Core concepts: Itineraries
Itineraries provide the basis for our spatial network. They are provided as a list of (L1,L2, distance) tuples; listed in any order. L1 and L2 are provided as strings, distance is an integer number (miles).
In the example:
>>> itineraries = [('L1', 'L2', 20), ('L2', 'L3', 10), ('L1', 'L4', 15), ('L4','L5',5), ('L4', 'L8', 20), ('L5', 'L8', 22), ('L5', 'L6', 6), ('L6', 'L7', 20)]
Supply and Demand of Goods (Pottery)
Each location has its own supply and demand in pottery: supply is provided as a positivenumber, demand — as a negative. Locations with the highest demand should be servedfirst. Assume both numbers are integers. This is provided as a dictionary (in no particular order)
>>> status = {'L1':50, 'L2':-5, 'L4':-40, 'L3':5, 'L5':5, 'L8':10, 'L6':10, 'L7':-30}Trader Locations
Traders reside in some but not all locations. Only locations where traders are present cantrade. Each location can have maximum a single trader. Traders are provided as strings.
Trader locations are provided as a dictionary (in no particular order). In the example:
>>> trader_locations = {'T1':'L1', 'T2': 'L3', 'T3':'L4', 'T4':'L8', 'T5':'L7','T6':'L5'}
Social network of Traders
Traders also form a social network. A trader only trades within their own network
(considers friends only). Traders also have access to supplies and demands in the
corresponding locations. Trader friendships are provided as a list of tuples (in no particular order):
>>> traders = [('T1','T2'), ('T2', 'T5'), ('T3', 'T1'), ('T3', 'T5'), ('T3', 'T6')]Q1
Write a function create_spatial_network(itineraries) that takes itineraries (a list of
tuples) and returns for each location its neighbors and distances to them. A location is
considered to be a neighbour of another location if it can be reached by a single road (oneedge).
Input:
**3; itineraries: a list of tuples, where each tuple is of the
form (location1, location2, distance). location1 and location2 are the stringlabels for these locations and distance is an integer. Your function should return a list of tuples, where each tuple is of the
form (location, neighbours). neighbours should be of the
form [(neighbour1, distance1), (neighbour2, distance2), ...] and be sorted by their
distances (in the increasing order). If two or more neighbors have the same distance tothe location, tie-break by alphanumeric order on their labels. Note that in addition to the neighbors, the overall list has to be sorted. You may assume: **3; Distances are non-negative integer values
**3; Inputs are correctly formatted data structures and types
**3; There are no duplicate entries itineraries, and in each neighbor pair only appear
once (i.e. no [('L1', 'L2', 20), ('L2', 'L1', 20)])
Here is a diagram of an example network:
For the network above, this would be a possible itineraries and the function should
return the following:
>>> itineraries = [('L1', 'L2', 20), ('L2', 'L3', 10), ('L1', 'L4', 15), ('L4','L5',5), ('L4', 'L8', 20), ('L5', 'L8', 22), ('L5', 'L6', 6), ('L6', 'L7', 20)]
>>> create_spatial_network(itineraries)
[('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1', 20)]), ('L3', [('L2',10)]),('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4', 5), ('L6', 6), ('L8', 22)]),('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8', [('L4', 20), ('L5', 22)])]A different example (not pictured):
>>> itineraries = [('L4', 'L1', 2), ('L3', 'L1', 5), ('L1', 'L5', 5), ('L2', 'L5',1)]>>> create_spatial_network(itineraries)
[('L1', [('L4', 2), ('L3', 5), ('L5', 5)]), ('L2', [('L5', 1)]), ('L3', [('L1',5)]),('L4', [('L1', 2)]), ('L5', [('L2', 1), ('L1', 5)])]
Q2
Write a function sort_demand_supply(status) that takes a dictionary of demands andsupplies and returns the information as a list of tuples sorted by the value so that locationswith greatest demands (the most negative number) are provided first.
Input: **3; status: a dictionary of demands and supplies. The keys are the location labels
(strings) and the values are integers, where a positive value represents supply
and a negative value represents demand. Your function should return a list of tuples, where each tuple is of the
form (location, demand_supply), and the list should be sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply). If two or more locationshave the same demand or supply, tie-break by alphanumeric order on their labels. You may assume: **3; Inputs are correctly formatted data structures and types
>>> status = {'L1':50, 'L2':-5, 'L4':-40, 'L3':5, 'L5':5, 'L8':10, 'L6':10, 'L7':-30}>>> sort_demand_supply(status)
[('L4', -40), ('L7', -30), ('L2', -5), ('L3', 5), ('L5', 5), ('L6', 10), ('L8',10),('L1', 50)]
Another example:
>>> status = {'L1':30, 'L2':-20, 'L4':100, 'L3':-50, 'L5':-60}
>>> sort_demand_supply(status)
[('L5', -60), ('L3', -50), ('L2', -20), ('L1', 30), ('L4', 100)]
Q3
Write a function create_social_network(traders) that takes traders, a list of tuples
specifing trader connections (edges in the trader social network) and returns a list
containing (trader, direct_connections) for each trader in traders.
Input: **3; traders: a list of tuples specifing trader connections (edges in the trader social
network). Each tuple is of the
form (trader1, trader2) where trader1 and trader2 are string names of
each trader.
Your function should return list of tuples in alphanumeric order of trader name, where
each tuple is of the form (trader, direct_connections), and direct_connections is analphanumerically sorted list of that trader's direct connections (i.e. there exists an edgebetween them in the trader social network). You may assume: **3; Inputs are correctly formatted data structures and types. Just like Q1a, you don't
need to guard against something like [('T1', 'T2'), ('T2', 'T1')] or duplicate
entries.
The pictured example:
>>> traders = [('T1','T2'), ('T2', 'T5'), ('T3', 'T1'), ('T3', 'T5'), ('T3', 'T6')]>>> create_social_network(traders)
[('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1', 'T5', 'T6']), ('T5', ['T2','T3']),('T6', ['T3'])]
Another example (not pictured):
>>> traders = [('T1', 'T5'), ('T2', 'T6'), ('T3', 'T7'), ('T4', 'T8'), ('T1', 'T6'),('T2', 'T7'), ('T3', 'T8'), ('T4', 'T5'), ('T1', 'T7'), ('T2', 'T8'), ('T3', 'T5'),('T4','T6')]
>>> create_social_network(traders)
[('T1', ['T5', 'T6', 'T7']), ('T2', ['T6', 'T7', 'T8']), ('T3', ['T5', 'T7', 'T8']),('T4', ['T5', 'T6', 'T8']), ('T5', ['T1', 'T3', 'T4']), ('T6', ['T1', 'T2', 'T4']),('T7',['T1', 'T2', 'T3']), ('T8', ['T2', 'T3', 'T4'])]
Q4
Write a function shortest_path(spatial_network, source, target, max_bound) that
takes a spatial network, initial (source) location, target location and the maximumdistance(that a trader located in the initial location can travel) as its input and returns a tuple withashortest path and its total distance.
Input:  spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a.  source: the location label (string) of the initial location. **3; target: the location label (string) of the target location. **3; max_bound: an integer (or None) that specifies the maximum total distance that
your trader can travel. If max_bound is None then always return the path withminimum distance. Your function should return a tuple (path, total_distance), where path is a string of
each location label in the path separated by a - hyphen character, and total_distanceisthe total of the distances along the path.
If there's two paths with the same minimum total distance, choose the path with morelocations on it. If there's two paths with the same minimum total distance and they havethe same number of locations on the path then choose alphanumerically smaller pathstring.
If there is no path with a total distance within the max_bound then your function shouldreturn (None, None). You may assume:
 Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values. **3; The network is connected, so a path always exists, although it may not have atotal distance within the maximum bound.
>>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> shortest_path(spatial_network, 'L1', 'L3', 50)
('L**L2-L3', 30)
>>> shortest_path(spatial_network, 'L1', 'L3', 0)
(None, None)
>>> shortest_path(spatial_network, 'L1', 'L3', 10)
(None, None)
>>> shortest_path(spatial_network, 'L1', 'L3', None)
('L**L2-L3', 30)
Q5
In this question you will be writing a
function trade(spatial_network, status_sorted, trader_locations, trader_network, max_dist_per_unit=3) that makes a single trade.
Input:
**3; spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a. **3; status_sorted: a list of tuples, where each tuple is of the
form (location, demand_supply), and the list is sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply) with ties brokenalphanumerically on location label. This corresponds with the output of the
function you wrote for Q1b. **3; trader_locations: a dictionary of trader locations. The structure of this
is trader_name: trader_location, where
both trader_name and trader_location are strings. **3; trader_network: a list of tuples in alphanumeric order of trader name, whereeach tuple is of the form (trader, direct_connections), and direct_connections is an alphanumerically sorted list of that trader's direct
connections (i.e. there exists an edge between them in the trader social network). This corresponds with the output of the function you wrote for Q1c. **3; max_dist_per_unit: a float or integer value that represents the maximumthetrader is willing to travel per unit. This parameter should have a default of 3in your
function. Your function should return a single trade as a
tuple (supplier_location, consumer_location, amount) where supplier_locationand consumer_location are location labels (strings) and amount is a positive integer. If notrade is possible return (None, None, None).
Traders from the locations with highest demand contact their social network asking for
help. Then they choose the contacts worth travelling to, based on distance and the
amount of supply there. The trade shoud be determined as follows:
1. Find the location with the highest demand, this will be the consumer location. 2. Find the trader at the consumer location (skip this location and go back to step1if
there are no traders at this location) and consider the trader's connections. 3. A supplier location can only supply to the consumer location if their status is
positive (i.e. they have items to supply) and can supply an amount up to this value(i.e. they can't supply so much that they result in having a demand for the itemthey are supplying). 4. If a supplier location is directly neighbouring by a single road (adjacent) to theconsumer location then the distance used is the direct distance between the twolocations, even if there exists a shorter route via other locations. If the supplier andconsumer are not adjacent then the shortest_path function should be used todetermine the distance. 5. The trader will trade with the connection that has the highest amount of units tosupply, subject to meeting the max_dist_per_unit of the distance/units ratio. 6. Then if no trade is possible in this location, consider the next location. Return (None, None, None) if all locations have been considered. You may assume: **3; Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values. **3; There will be at most one trader at any particular location.
Consider the spatial and trader network in the image above. With a
default max_dist_per_unit of 3, the trader will only consider travelling maximum3 milesfor each unit (one direction), i.e. they will agree to travel 6 miles for get 2 pottery units but
not a single one.
In the example, we have 'L4' as the location with the highest demand of 40 units
(demand_supply=-40) and the trader 'T3' who resides there. 'T3''s direct connectionsare ['T1', 'T5', 'T6']. We can't trade with 'T5' because at their location ('L7') there is
also demand for the items. We compare the units able to be supplied and the distance-units ratio for each potential
supplier: **3; T1:
o location: L1
o supply max: 50
o distance: 15
o so they could supply all 40 units that are demanded at L4
o distance/units = 15/40 = 0.375
**3; T6:
o location: L5
o supply max: 5
o distance: 5
o so they could supply 5 of the units that are demanded at L4
o distance/units = 5/5 = 1.0
Since T1 has the largest amount of units able to be supplied, and the distance/units ratiois below the maximum (3), this trade goes ahead and the function would
return ('L1', 'L4', 40). >>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> status_sorted = [('L4', -40), ('L7', -30), ('L2', -5), ('L3', 5), ('L5', 5), ('L6',10), ('L8', 10), ('L1', 50)]
>>> trader_locations = {'T1':'L1', 'T2': 'L3', 'T3':'L4', 'T4':'L8', 'T5':'L7','T6':'L5'}
>>> trader_network = [('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1','T5','T6']), ('T5', ['T2', 'T3']),('T6', ['T3'])]
>>> trade(spatial_network, status_sorted, trader_locations, trader_network)
('L1', 'L4', 40)
More examples:
>>> spatial_network = [('L1', [('L4', 2), ('L3', 5), ('L5', 5)]), ('L2', [('L5',1)]),('L3', [('L1', 5)]), ('L4', [('L1', 2)]), ('L5', [('L2', 1), ('L1', 5)])]
>>> status = {'L1':30, 'L2':-20, 'L4':100, 'L3':-50, 'L5':-60}
>>> status_sorted = [('L5', -60), ('L3', -50), ('L2', -20), ('L1', 30), ('L4',100)]>>> trader_locations = {'T1': 'L1', 'T2': 'L2'}
>>> trader_network = [('T1', ['T2']), ('T2', ['T1'])]
>>> trade(spatial_network, status_sorted, trader_locations, trader_network)
('L1', 'L2', 20)
>>> trade(spatial_network, status_sorted, trader_locations, trader_network,
max_dist_per_unit=0.001)
(None, None, None)
Q6
In this part you'll be using the trade() function from part 3a iteratively to determine thestatus after several trades. Write a
function trade_iteratively(num_iter, spatial_network, status, trader_locations, trader_network, max_dist_per_unit=3) that takes the number of iterations to perform,
the spatial network, status dictionary, trader locations dictionary, trader network, and
maximum distance per unit and returns a tuple containing the sorted status list
after num_iter trades along with a list of trades performed.
Input: **3; num_iter: the number of iterations to perform as an integer or None if the
iteration should continue until no further trades can be made. **3; spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a. **3; status: a dictionary of demands and supplies. The keys are the location labels
(strings) and the values are integers, where a positive value represents supply
and a negative value represents demand. **3; trader_locations: a dictionary of trader locations. The structure of this
is trader_name: trader_location, where
both trader_name and trader_location are strings. **3; trader_network: a list of tuples in alphanumeric order of trader name, whereeach tuple is of the form (trader, direct_connections), and direct_connections is an alphanumerically sorted list of that trader's direct
connections (i.e. there exists an edge between them in the trader social network). This corresponds with the output of the function you wrote for Q1c.
**3; max_dist_per_unit: a float or integer value that represents the maximumthetrader is willing to travel per unit. This parameter should have a default of 3in your
function. At each iteration, the next trade to be performed is determined by the process in part 3a. We strongly suggest using the provided trade() function to find this trade. Your functionshould update the status dictionary at each iteration. Your function should return a tuple (final_supply_sorted, trades) containing the sorteddemand-supply status after num_iter trades along with a list of trades performed. The final_supply_sorted should be a list of tuples, where each tuple is of the
form (location, demand_supply), and the list should be sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply). If two or more locationshave the same demand or supply, tie-break by alphanumeric order on their
labels. trades should be a list of each trade performed, where a trade is of the
form (supplier_location, consumer_location, amount) where supplier_locationandconsumer_location are location labels (strings) and amount is a positive integer. You may assume: Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values.  There will be at most one trader at any particular location.
In the example pictured, only one trade can occur:
>>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> status = {'L1': 50, 'L2': -5, 'L4': -40, 'L3': 5, 'L5': 5, 'L8': 10, 'L6': 10,'L7':-30}
>>> trader_locations = {'T1': 'L1', 'T2': 'L3', 'T3': 'L4', 'T4': 'L8', 'T5': 'L7','T6':'L5'}
>>> trader_network = [('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1','T5','T6']), ('T5', ['T2', 'T3']),('T6', ['T3'])]
>>> trade_iteratively(1, spatial_network, status, trader_locations, trader_network)([('L7', -30), ('L2', -5), ('L4', 0), ('L3', 5), ('L5', 5), ('L1', 10), ('L6', 10),('L8',10)], [('L1', 'L4', 40)])
>>> trade_iteratively(None, spatial_network, status, trader_locations, trader_network)([('L7', -30), ('L2', -5), ('L4', 0), ('L3', 5), ('L5', 5), ('L1', 10), ('L6', 10),('L8',10)], [('L1', 'L4', 40)])

請加QQ:99515681  郵箱:99515681@q.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE438、代做C/C++編程語言
  • 下一篇: cs400編程代寫、A03.FirstGit程序語言代做
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          激情久久婷婷| 国产精品亚洲精品| 国产精品国产精品国产专区不蜜| 欧美日本成人| 国产精品毛片高清在线完整版| 国产精品二区在线| 国内久久婷婷综合| 亚洲黄色有码视频| 亚洲图片欧美午夜| 久久久久久久成人| 欧美激情aaaa| 国产日韩欧美亚洲| 亚洲精品国产精品乱码不99| 亚洲视频在线免费观看| 久久精品欧美日韩| 欧美日韩国产不卡| 国产亚洲二区| 日韩亚洲欧美一区| 久久久www成人免费精品| 欧美搞黄网站| 国产一区二区三区在线观看视频| 亚洲国产日韩美| 亚洲欧美精品一区| 欧美国产日韩视频| 国产一区视频网站| 中文欧美日韩| 欧美黄色aa电影| 国产一区二区欧美| 亚洲欧美日韩中文播放| 久久综合狠狠综合久久激情| 国产精品久久久久77777| 亚洲黄一区二区| 久久精品国产成人| 国产精品日韩精品欧美精品| 亚洲人成亚洲人成在线观看图片| 香蕉乱码成人久久天堂爱免费| 欧美成人资源网| 激情欧美一区二区三区| 欧美亚洲在线观看| 国产精品日韩二区| 99re6热在线精品视频播放速度| 久久久爽爽爽美女图片| 国产精品视频免费一区| 亚洲视频电影在线| 欧美理论大片| 日韩视频一区二区三区在线播放| 看片网站欧美日韩| 国内不卡一区二区三区| 亚洲欧美日韩精品一区二区| 国产精品久久久久一区| 亚洲少妇在线| 国产精品久久| 中日韩视频在线观看| 欧美日韩免费一区二区三区视频 | 亚洲国产精品一区二区第四页av| 欧美亚洲免费在线| 国产欧美三级| 欧美在线亚洲一区| 国内精品亚洲| 嫩草成人www欧美| 亚洲级视频在线观看免费1级| 免费一级欧美片在线观看| 亚洲第一精品在线| 欧美激情精品久久久久久黑人| 亚洲国产精品高清久久久| 久久综合亚洲社区| 在线精品亚洲一区二区| 久久久久久91香蕉国产| 伊人久久大香线蕉av超碰演员| 久久婷婷人人澡人人喊人人爽| 亚洲第一福利视频| 欧美激情国产高清| 亚洲视屏一区| 国内精品模特av私拍在线观看| 久久九九热re6这里有精品| ●精品国产综合乱码久久久久| 免费不卡在线视频| 中日韩美女免费视频网址在线观看 | 亚洲欧美另类中文字幕| 欧美日本一区二区三区| 在线看片成人| 老司机免费视频久久| 国产精品毛片a∨一区二区三区|国 | 日韩亚洲视频| 国产欧美91| 久久久久久久久久久久久女国产乱 | 日韩一区二区精品| 国产欧美日韩一区二区三区| 久久精品视频在线| 一区二区免费在线观看| 国产一区二区三区久久| 欧美猛交免费看| 欧美在线www| 日韩亚洲成人av在线| 国产一区二三区| 欧美区在线播放| 久久久久成人精品| 亚洲一区二区视频在线| 在线免费观看日韩欧美| 国产精品成人一区二区三区吃奶| 久久人人爽人人爽| 亚洲欧美中文在线视频| 亚洲精品久久7777| 尤物99国产成人精品视频| 国产精品久久久久国产a级| 免费成人在线视频网站| 午夜伦欧美伦电影理论片| 亚洲精品中文字幕女同| 伊人久久亚洲影院| 国产老女人精品毛片久久| 欧美日韩精品免费观看视一区二区| 久久久久久有精品国产| 午夜精品久久久久久久久久久| 999在线观看精品免费不卡网站| 伊人久久综合97精品| 国产日韩精品一区二区浪潮av| 欧美日韩一区二区国产| 欧美黄色片免费观看| 蜜乳av另类精品一区二区| 久久九九久精品国产免费直播| 亚洲砖区区免费| 99国产精品私拍| 日韩亚洲不卡在线| 亚洲精品日韩一| 亚洲高清电影| 又紧又大又爽精品一区二区| 国产模特精品视频久久久久| 欧美视频福利| 欧美日韩国产成人高清视频| 欧美国产极速在线| 欧美大片免费看| 欧美成人日韩| 欧美精品一区二区精品网| 欧美国产日韩一区二区| 欧美高清不卡| 欧美日本一区| 国产精品麻豆欧美日韩ww| 国产精品日韩欧美| 国产综合在线视频| 亚洲高清三级视频| 日韩一本二本av| 亚洲亚洲精品在线观看 | 国产日韩精品一区观看| 国产日韩欧美中文在线播放| 国产一区二区三区四区在线观看| 国产一区二区在线观看免费| 国产一区二区中文字幕免费看| 黄色工厂这里只有精品| 亚洲国产欧美在线人成| 亚洲精品一区在线观看香蕉| 亚洲婷婷综合色高清在线| 欧美一级免费视频| 久久综合狠狠综合久久激情| 欧美jizzhd精品欧美巨大免费| 欧美精品久久久久久久久久| 欧美日一区二区在线观看| 国产精品亚洲第一区在线暖暖韩国| 国产日韩欧美成人| 亚洲国产精品欧美一二99| aⅴ色国产欧美| 欧美在线视频在线播放完整版免费观看 | 亚洲欧美日韩国产中文在线| 欧美在线视频免费播放| 欧美成人亚洲成人| 国产精品国产三级国产普通话三级| 国产精品女同互慰在线看| 怡红院av一区二区三区| 一区二区av| 久久永久免费| 欧美日韩直播| 一区二区视频在线观看| 亚洲色在线视频| 免费在线日韩av| 国产亚洲午夜| 9久re热视频在线精品| 久久av在线| 国产精品久久久久毛片软件| 亚洲电影下载| 久久精品女人天堂| 欧美性生交xxxxx久久久| 在线播放视频一区| 午夜精品影院| 欧美日韩亚洲成人| 亚洲国产美女精品久久久久∴| 欧美亚洲三级| 欧美色视频日本高清在线观看| 黑丝一区二区| 久久国产福利国产秒拍| 国产精品黄视频| 一区二区av在线| 欧美高清在线观看| 1204国产成人精品视频| 久久狠狠亚洲综合| 国产麻豆9l精品三级站| 亚洲视频免费| 欧美亚男人的天堂| 一本色道88久久加勒比精品| 欧美精品久久天天躁| 亚洲人午夜精品| 欧美二区在线看|