99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MA2552、代寫Matlab編程設計

時間:2023-12-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ [0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f and the constants ak, solves the

O.D.E. (1). Note that some systems might have an infinite number of solutions. In

that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:INT3095代做、代寫Artificial Intelligence語言編程
  • 下一篇:代寫MGMT20005、代做Decision Analysis程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          巨胸喷奶水www久久久免费动漫| 激情五月婷婷综合| 久久亚洲综合网| 在线视频日韩| 亚洲国产精品悠悠久久琪琪| 国产精品国产福利国产秒拍| 裸体一区二区三区| 欧美专区日韩视频| 亚洲一区二区三区国产| 亚洲国产精品日韩| 激情成人综合网| 国产视频精品xxxx| 国产美女精品| 国产精品久久久久久五月尺| 欧美日本不卡高清| 欧美精品激情| 欧美女主播在线| 欧美激情亚洲| 欧美激情一区三区| 免费日韩一区二区| 免费成人av在线看| 久久人人九九| 久久久人成影片一区二区三区观看| 亚洲在线观看视频| 亚洲主播在线| 欧美一区二区三区四区高清| 午夜精品影院在线观看| 亚洲一区二区3| 亚洲免费视频在线观看| 一区二区电影免费在线观看| 亚洲三级免费| 一二三区精品福利视频| 亚洲免费观看在线视频| 一区二区电影免费观看| 亚洲已满18点击进入久久| 亚洲自拍啪啪| 欧美在线视频在线播放完整版免费观看| 一本久久综合亚洲鲁鲁五月天| 99re国产精品| 亚洲专区在线| 久久av一区二区三区亚洲| 快播亚洲色图| 欧美日韩午夜| 国产日韩欧美一区| 亚洲国产欧美一区二区三区同亚洲 | 在线日韩视频| 亚洲破处大片| 国产精品99久久久久久久久久久久| 一本色道88久久加勒比精品| 亚洲伊人久久综合| 久久久久国产精品www| 牛牛精品成人免费视频| 欧美性片在线观看| 国产综合久久久久久鬼色| 亚洲激情一区二区| 亚洲在线视频观看| 欧美成人亚洲成人| 国产精品免费看| 亚洲国产精品精华液2区45| 正在播放欧美视频| 久久久久久69| 国产精品久久一区二区三区| 在线观看欧美日韩| 亚洲欧美日韩直播| 欧美wwwwww| 国产一区二区三区的电影 | 99天天综合性| 久久精品免费| 欧美视频一区二区三区四区| 伊人久久综合97精品| 亚洲专区在线视频| 欧美日韩成人精品| 亚洲电影一级黄| 久久99伊人| 欧美午夜在线视频| 亚洲乱码一区二区| 麻豆精品视频在线观看| 国产视频一区二区三区在线观看| 日韩视频免费观看| 免费试看一区| 在线观看日韩av| 久久久91精品国产| 国产毛片一区| 亚洲欧美国产精品桃花| 欧美精品色网| 91久久久在线| 欧美激情一区| 亚洲精品国产精品乱码不99| 可以看av的网站久久看| 黄色成人免费观看| 久久久久国产一区二区三区四区 | 久久一区二区三区国产精品| 国产欧美精品va在线观看| 亚洲一区在线播放| 国产精品久久久久久久9999| av72成人在线| 欧美三区免费完整视频在线观看| 亚洲精品乱码久久久久久久久| 乱人伦精品视频在线观看| 精品动漫3d一区二区三区| 久久综合九色综合欧美就去吻| 国产在线观看精品一区二区三区| 欧美在线观看日本一区| 国产一区观看| 老色鬼久久亚洲一区二区| 激情文学一区| 欧美精品日韩精品| 亚洲一区二区三区四区五区黄| 国产精品毛片一区二区三区| 亚洲男女自偷自拍图片另类| 国产精品美女久久久久av超清 | 亚洲欧美乱综合| 国产日韩在线亚洲字幕中文| 老司机免费视频一区二区| 最新日韩欧美| 国产精品男gay被猛男狂揉视频| 欧美亚洲色图校园春色| 国内成人自拍视频| 欧美激情乱人伦| 亚洲欧美日韩中文在线制服| 狠狠做深爱婷婷久久综合一区 | 99在线观看免费视频精品观看| 欧美日韩一卡| 久久久国产成人精品| 99re66热这里只有精品4| 国产精品国产馆在线真实露脸| 欧美一区二区三区四区在线观看| 精品动漫3d一区二区三区免费版| 欧美精品在线观看91| 香蕉国产精品偷在线观看不卡| 精品电影在线观看| 欧美午夜a级限制福利片| 久久久精品国产99久久精品芒果| 亚洲美女黄色| 国模吧视频一区| 欧美视频在线免费| 麻豆91精品| 欧美一区二区三区喷汁尤物| 亚洲激情国产| 国产又爽又黄的激情精品视频| 欧美精品一区三区| 久久免费午夜影院| 午夜精品久久久久久久久久久久久 | 中文精品99久久国产香蕉| 在线看国产一区| 国产精品青草综合久久久久99 | 亚洲精品一区在线观看| 国产欧美韩日| 国产精品人成在线观看免费 | 国产伦精品一区二区三区四区免费 | 国产精品a级| 欧美成人免费全部观看天天性色| 午夜视频在线观看一区| 在线综合欧美| 一本大道久久精品懂色aⅴ| 91久久精品国产| 国内外成人免费激情在线视频网站 | 亚洲人成毛片在线播放女女| 国产中文一区二区| 国产美女精品| 国产精品影音先锋| 国产精品毛片| 国产精品一卡二卡| 国产精品午夜久久| 国产精品稀缺呦系列在线| 国产精品免费福利| 国产精品国产三级国产专播精品人| 欧美精品一线| 欧美日韩视频一区二区三区| 欧美日韩午夜剧场| 欧美三级黄美女| 国产精品久久久久aaaa樱花| 欧美午夜精品久久久久久久| 欧美日韩视频| 国产欧美日韩综合| 国产综合网站| 伊人色综合久久天天五月婷| 亚洲国产精品999| 免费久久99精品国产自| 性xx色xx综合久久久xx| 性娇小13――14欧美| 久久大综合网| 玖玖在线精品| 欧美日韩天天操| 国产精品手机视频| 狠狠色综合网站久久久久久久| 亚洲大胆人体视频| 一区二区av| 久久免费高清视频| 欧美久久久久中文字幕| 国产精品高潮呻吟久久| 国产午夜精品美女毛片视频| 伊人激情综合| av成人毛片| 久久精品二区| 欧美视频在线观看视频极品| 国产日韩精品入口| 亚洲精品久久久久中文字幕欢迎你| 亚洲一级片在线观看| 久久久精品国产免大香伊|