99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP5930M 代做、代寫 c++,java 程序語言

時間:2023-12-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Computing: assessment brief
   Module title
 Scientific Computation
  Module code
 COMP5930M
  Assignment title
 Coursework 2
  Assignment type and description
 Coursework assignment
  Rationale
 TBA
  Weighting
 20% of total mark
  Submission dead- line
 December 14th 2023 at 10:00
  Submission method
 Turnitin submission through Minerva
  Feedback provision
 Feedback provided on Minerva
  Learning outcomes assessed
 (i) Formulate and solve systems of nonlinear equations to solve challenging real-world problems arising from en- gineering and computational science; (ii) Implement al- gorithmic solutions to solve computational differential equation problems based on mathematical theory; (iii) Analyse computational linear algebra problems to iden- tify and implement the most efficient and scalable solu- tion algorithm to apply for large problems.
  Module lead
 Dr Toni Lassila
           1

1. Assignment guidance
Provide answers to the two exercises below. Answer both exercises.
2. Assessment tasks
Exercise 1: The Burgers’ equation models the propagation of a pres- sure wave in shock tube. It is a nonlinear partial-differential equation in one spatial dimension to find u(x, t) s.t.
∂u + u∂u = ν ∂2u, (1) ∂t ∂x ∂x2
where the boundary conditions u(a, t) = ua and u(b, t) = ub for all t, and the initial condition u(x, 0) = u0(x) need to be prescribed in order to obtain a well-posed problem. Here ν is the kinematic viscosity of the fluid. For ν = 0 we have the inviscid Burgers’ equation, and for ν > 0 we have the viscous Burgers’ equation.
(a) Applying the central difference formula to the second order deriva- tive in space, the upwind difference formula
􏰀Uk−Uk 􏰁
i−1
using implicit Euler’s method leads to the discrete formulation: Uk −Uk−1 􏰀Uk −Uk 􏰁 􏰀Uk −2Uk +Uk 􏰁
Fi(U)= i i +Uik i i−1 −ν i+1 i i−1 =0 ∆t h h2
(2) for i = 2,3,...,m−1 where the interval has been discretised with
m uniformly distributed nodes and a spatial grid size h. Implement the function F as a python subroutine fun burgers.py
        def fun_burgers( uk, ukp, dt, h, nu, ua, ub )
where uk is the vector Uk of size m, ukp is the previous time-step solution vector Uk−1, dt is the time-step ∆t, h is the spatial grid size parameter h, and nu is the kinematic viscosity ν. Include the boundary conditions ua and ub in the implementation. [6 marks]
2
Uik i
to the first order derivative in space, and discretising (1) in time
 h
   
(b) Derive the analytical formulas for the nonzero elements on row i of the Jacobian matrix for (2): [4 marks]
∂Fi , ∂Fi, ∂Fi . ∂Ui−1 ∂Ui ∂Ui+1
(c) Solve problem (2) numerically using your fun burgers.py and the PDE solver template solver burgers.py provided in the course- work folder. Use the viscosity value ν = 0.01, the time-step ∆t=0.01,thegridsizeh=0.01,andafinaltimeofT =1. The initial solution u(x, 0) should be taken as a unit step located at x = 0.1 (see below) and the boundary conditions as: u(0, t) = 1 and u(1, t) = 0.
   Figure 1: Initial condition u0(x) for the Burgers’ equation (1)
Plot the solution u(x, T ) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). [2 marks]
3

(d) The solution of Burgers’ equation (1) can be shown to be a (decay- ing) wavefront that travels from left to right at a constant velocity v. What is the approximate value of the numerical wavefront ve- locity vnum for ν = 0.01, ∆t = 0.01, and h = 0.01? Measure the approximate location of the wavefront using the point where the solution u(xmid) ≈ 0.5. [1 mark]
(e) Replace the discretisation of the nonlinear convection term with the downwind difference formula
􏰀Uk − Uk 􏰁
i (3)
and solve the problem with same parameters as in (c). Plot the solution u(x,T) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). What is the numerical wavefront velocity vnum in this case?
Now set ν = 0.001 and solve the problem again using the down- wind difference formula. What do you observe? Now solve the problem with ν = 0.001 using the original upwind difference for- mula and compare the results. What is the numerical wavefront velocity vnum in this case? [7 marks]
Uik i+1
h
 4

Exercise 2: Consider the anisotropic diffusion equation to find u(x, y) s.t.
􏰀 ∂2u ∂2u􏰁
− μx∂x2 +μy∂y2 =f(x,y), (x,y)∈(0,1)×(0,1), (4)
and the boundary condition u = 0 on Γ (the boundary of the unit square), where u is a scalar function that models the temperature of a heat-conducting object modelled here as a unit square and f(x,y) is a function modelling a heat source. The heat conductivity coefficients, μx > 0 and μy > 0, can have different magnitudes (anisotropy).
(a) Discretising the problem (4) using the second-order finite differ- ence formulas
∂2u ≈ ui,j−1 − 2ui,j + ui,j+1 .
Write the second-order finite difference stencil (similarly as in Tu- torial 7)
∂2u ≈ ui−1,j − 2ui,j + ui+1,j , ∂x2 h2
  ∂y2
−μx h2 −μy h2 = fi,j.
h2 􏰀ui−1,j − 2ui,j + ui+1,j 􏰁 􏰀ui,j−1 − 2ui,j + ui,j+1 􏰁
leads to the discretised form
  ?**7;
s11 s12 s13 ?**8; ?**8;
S=s s s?**8;  21 22 23?**8;
?**8; s s s?**9;
corresponding to this finite difference scheme. [4 marks] (b) Implement a python function source function.py
    def source_function( x, y, h )
that returns the right-hand side by evaluating the function:
f(x,y) :=
⭺**;1, ifx≥0.1andx≤0.3andy≥0.1andy≤0.3 0, otherwise
.
Include the source code in your answer. [3 marks] 5
31 ** 33
(5)

 Figure 2: Computational domain for problem (4) and the sub-region where the heat source is located (in red).
(c) Modify the solver from Tutorial 7 to numerically solve the diffusion problem (4) for the right-hand side (5).
Solve the linear problem AU = F using the conjugate gradient method (without preconditioning) with the diffusion coefficients μx = 1 and μy = 1, stopping tolerance tol = 10−6, and maxi- mum of 1000 CG iterations. You can use the CG implementation in scipy.sparse.linalg.cg for this problem or code your own implementation.
Plot the solution surface and include the plot in your answer. How many iterations does it take for CG to converge in this case?
[2 marks]
(d) Consider now the use of a preconditioner to accelerate the con- vergence of CG. The incomplete-LU preconditioner approximates the system matrix A ≈ LincUinc by performing Gaussian elimi- nation but setting to zero any elements that are smaller than a dropoff tolerance ε chosen by the user. You can use the imple- mentation provided in scipy.sparse.linalg.spilu to compute
6

the incomplete factors Linc and Uinc.
Write a python implementation myPCG.py of the preconditioned
conjugate gradient from Lecture 18:
            def myPCG( A, b, L, U, tol, maxit )
that solves the preconditioning step for the residual, Mzi+1 = LU zi+1 = ri+1 , using appropriate solution algorithms. Include the source code as part of your answer. [4 marks]
(e) Solve the problem (4) again using your preconditioned CG imple- mentation from (d). Use a dropout tolerance of ε = 0.1 for the incomplete LU-factorisation.
How many nonzero elements (nnz) do the factors Linc and Uinc have in this case?
How many PCG iterations does the problem take to converge to tol = 10−6 now?
[2 marks]
(f) Repeat the experiment from (e) with different values of the dif- fusion coefficients. Solve the problem (4) with μx = 0.1 and μx = 0.01, while keeping the other value at μy = 1. Solve the problem using PCG with the same ILU-preconditioner as before with a dropout tolerance of ε = 0.1. Plot the two respective solu- tions and the respective number of CG iterations. What do you observe?
[5 marks]
3. General guidance and study support
The MS Teams group for COMP53**M Scientific Computation will be used for general support for this assignment. If your question would reveal parts of the answer to any problem, please send a private message to the module leader on MS Teams instead. You can also use the tutorial sessions to ask questions about coursework.
4. Assessment criteria and marking process
Assessment marks and feedback will be available on Minerva within
three weeks of the submission deadline. Late submissions are allowed 7

within 14 days of the original deadline providing that a request for an extension is submitted before the deadline. Standard late penalties apply for submissions without approved extensions.
5. Presentation and referencing
When writing mathematical formulas, use similar notation and sym- bols as during the lectures and tutorials. Hand-written sections for mathematical notation are acceptable but need to be clearly readable.
You may assume theorems and other results that have been presented during lectures and tutorials as known. Any other theorems need to be cited using standard citation practice.
6. Submission requirements
This is an individual piece of work. Submit your answers through Tur- nitin as one PDF document (generated either in Word or with LaTeX). You may use hand-written and scanned pages for mathematical formu- las, but these need to be clearly legible and the document must contain at least some typeset text or Turnitin will reject it. All submissions will be checked for academic integrity.
7. Academic misconduct and plagiarism
Academic integrity means engaging in good academic practice. This involves essential academic skills, such as keeping track of where you find ideas and information and referencing these accurately in your work.
By submitting this assignment you are confirming that the work is a true expression of your own work and ideas and that you have given credit to others where their work has contributed to yours.
8. Assessment/marking criteria grid
Total number of marks is 40, divided as follows:
Exercise 1 (One-dimensional Burgers equation): 20 marks
Exercise 2 (Anisotropic diffusion and conjugate gradient): 20 marks
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CAN201 代做、代寫 Python語言編程
  • 下一篇:代寫COM6471、代做 java 語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产日产欧美一区二区视频| 成人网在线播放| 在线不卡中文字幕播放| 亚洲一区免费视频| 欧美日韩和欧美的一区二区| 午夜电影网亚洲视频| 69久久夜色精品国产69蝌蚪网| 日本欧美大码aⅴ在线播放| 日韩欧美区一区二| 国产真实乱偷精品视频免| 久久久久久久久久美女| 一本大道久久a久久精品综合| 亚洲一区二区不卡免费| 欧美大片顶级少妇| 91麻豆国产福利精品| 午夜不卡av免费| 国产欧美一区二区精品久导航| 一本一道久久a久久精品| 午夜影视日本亚洲欧洲精品| 精品国产制服丝袜高跟| 91视频一区二区三区| 天天做天天摸天天爽国产一区| 精品福利一区二区三区| 91浏览器打开| 国产精品18久久久| 亚洲国产va精品久久久不卡综合| 欧美精品一区二区三区在线| 色呦呦一区二区三区| 久久精品二区亚洲w码| 亚洲最新视频在线观看| 久久久久久99精品| 欧美日本一区二区三区| 成人国产亚洲欧美成人综合网| 免费观看在线综合色| 中文字幕一区视频| 欧美刺激脚交jootjob| 在线国产电影不卡| 9i看片成人免费高清| 久草热8精品视频在线观看| 伊人开心综合网| 中文在线资源观看网站视频免费不卡| 欧美日韩国产另类一区| 91丨九色丨尤物| 国产电影一区二区三区| 蜜臀av亚洲一区中文字幕| 亚洲精品国产无套在线观| 国产精品乱人伦一区二区| 精品国产一二三区| 91麻豆精品国产91久久久久久久久 | 欧美国产精品久久| xf在线a精品一区二区视频网站| 91精品欧美久久久久久动漫 | 欧美一区二区精品久久911| 欧美日韩国产电影| 欧美人动与zoxxxx乱| 欧美日韩国产三级| 欧美年轻男男videosbes| 欧美日韩视频专区在线播放| 色丁香久综合在线久综合在线观看| 国产激情偷乱视频一区二区三区| 日本大胆欧美人术艺术动态| 亚洲v日本v欧美v久久精品| 天天综合天天做天天综合| 香蕉成人啪国产精品视频综合网| 五月婷婷久久丁香| 三级欧美韩日大片在线看| 亚洲第一av色| 日本免费新一区视频| 久久国产精品99久久人人澡| 狠狠色丁香九九婷婷综合五月| 精品一区二区在线免费观看| 福利视频网站一区二区三区| 福利视频网站一区二区三区| 色综合亚洲欧洲| 在线观看一区二区视频| 777a∨成人精品桃花网| 精品久久久久久无| 日韩理论片一区二区| 亚洲高清在线精品| 国产一区二区三区在线观看免费| 国产精品一二一区| 色综合久久天天综合网| 欧美人与性动xxxx| 国产喷白浆一区二区三区| 亚洲六月丁香色婷婷综合久久| 丝袜美腿亚洲色图| 国产福利精品导航| 欧美性三三影院| www一区二区| 亚洲一线二线三线视频| 麻豆成人在线观看| 色伊人久久综合中文字幕| 欧美一区二区三区免费视频| 欧美国产精品劲爆| 视频一区视频二区中文| 大尺度一区二区| 7777精品伊人久久久大香线蕉经典版下载| 亚洲精品一区二区三区福利| 亚洲女爱视频在线| 国产一区二区中文字幕| 欧美性xxxxxx少妇| 中文文精品字幕一区二区| 日韩专区中文字幕一区二区| 老司机一区二区| 在线日韩国产精品| 久久综合视频网| 午夜精品久久一牛影视| 成人免费视频一区| 26uuu亚洲综合色| 日韩精品视频网| 欧美午夜理伦三级在线观看| 亚洲国产精品99久久久久久久久| 婷婷久久综合九色综合绿巨人 | 午夜国产精品一区| 欧美亚洲另类激情小说| 中文字幕一区二区三区视频| 国产麻豆视频精品| 日韩精品资源二区在线| 天天色综合天天| 欧美日韩中文一区| 亚洲电影一区二区| 91一区二区在线观看| 国产精品视频线看| 国产一区二区三区久久悠悠色av| 日韩一区二区三区精品视频| 亚洲成人午夜电影| 欧美日韩高清在线播放| 亚洲亚洲人成综合网络| 欧美在线影院一区二区| 亚洲亚洲精品在线观看| 在线免费av一区| 亚洲一二三区视频在线观看| 欧美做爰猛烈大尺度电影无法无天| 中文字幕在线观看不卡| 成人激情视频网站| 国产精品网曝门| 99精品视频在线观看| 中文字幕欧美一区| 93久久精品日日躁夜夜躁欧美| 国产精品激情偷乱一区二区∴| 国产成人免费视频精品含羞草妖精| 精品国产三级a在线观看| 韩国精品免费视频| 国产香蕉久久精品综合网| 国产乱子伦视频一区二区三区 | 蓝色福利精品导航| 久久久午夜精品| 99久久99久久久精品齐齐| 亚洲精品免费一二三区| 欧美性猛片aaaaaaa做受| 爽好久久久欧美精品| 欧美精品一区二区三区蜜桃视频| 国产高清不卡一区二区| 国产精品第一页第二页第三页| 色综合久久久久| 日韩中文字幕区一区有砖一区| 日韩欧美一区二区视频| 精品制服美女丁香| 国产精品成人免费| 91精品国产综合久久久久久久| 久久精品国产亚洲aⅴ| 国产欧美视频一区二区三区| 在线亚洲精品福利网址导航| 日韩福利电影在线| 亚洲国产精品激情在线观看 | 91精品久久久久久久99蜜桃| 国产一区二区美女| 亚洲视频一区二区在线观看| 欧美日免费三级在线| 国产在线一区观看| 亚洲一区二区中文在线| 日韩精品一区在线| 在线观看一区日韩| 国产成人av一区二区| 亚洲成人资源网| 中文字幕中文乱码欧美一区二区| 在线不卡免费av| 99国产精品久久久久久久久久| 天堂蜜桃91精品| 亚洲女人****多毛耸耸8| 久久先锋影音av| 欧美男人的天堂一二区| 色综合久久综合网97色综合| 精品一区二区三区免费视频| 亚洲二区视频在线| 亚洲欧美自拍偷拍| 久久蜜桃av一区精品变态类天堂 | 麻豆中文一区二区| 一区二区久久久| 国产精品免费久久| 久久精品一区蜜桃臀影院| 91精品国产色综合久久不卡蜜臀 | 白白色亚洲国产精品| 国产精品1区2区3区| 免费看欧美美女黄的网站| 一区二区久久久| 一区二区三区电影在线播| 国产精品素人视频| 久久久亚洲午夜电影| 久久婷婷久久一区二区三区|