99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做 MPHY0041、代寫 C++設計編程
代做 MPHY0041、代寫 C++設計編程

時間:2024-12-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



 UCL DEPARTMANT OF MEDICAL PHYSICS AND
BIOMEDICAL ENGINEERING
Module Code: Module Title : Coursework Title : Lecturer:
Date Handed out: Student ID (Not Name)
MPHY0041
Machine Learning in Medical Imaging Assessed Coursework
Dr. Andre Altmann
Friday, October 25th 2024
Undergraduate / Postgraduate Assessed Coursework Tracking Sheet
              Submission Instruction: Before the submission deadline, you should digitally submit your source code and generated figures (a single jupyter notebook file including your written answers). In case you submit multiple files, all files need to be combined in one single zip file and submitted on the module page at UCL Moodle.
Coursework Deadline: Friday, November 29th 2024 at 16:00 at UCL Moodle submission section
Date Received
Date Returned to Student:
The Department of Medical Physics and Biomedical Engineering follows the UCL Academic Manual with regards to plagiarism and coursework late submission. UCL Policy on Plagiarism
UCL Policy on Late Submission of Coursework
If you are unable to submit on-time due to extenuating circumstances (EC), please refer to the UCL Policy on Extenuating Circumstances and contact our EC Secretary at medphys.teaching@ucl.ac.uk as soon as possible.
UCL Policy on Extenuating Circumstances
Please indicate what areas of your coursework you particularly would like feedback on:
Mark (%):
Please note that the mark is provisional and could be changed when the exam boards meet to moderate marks.
                
Please note: This is an AI Category 1 coursework (i.e., AI technologies cannot be used to solve the questions): https://www.ucl.ac.uk/teaching-learning/generative-ai-hub/using- ai-tools-assessment.
Please submit a single jupyter notebook file for Exercises 1, 2, and 3. The file should contain code, plots and comments that help the understanding of your answers. You can give your written answers as a Markdown within the jupyter notebook.
The provided jupyter notebook Notebook_MPHY0041_2425_CW1.ipynb contains the individual gap codes/functions for Exercise 2 and the functions provided for Exercise 3. Please use this notebook as the basis for your submission.
1. Load the dataset ‘Dementia_train.csv’ it contains diagnosis (DX), a cognitive score (ADAS13) and two cerebrospinal fluid (CSF) measurements for two proteins: amyloid and tau. There are three diagnostic labels: CN, MCI, and Dementia.
a) Remove MCI subjects from the dataset. Compute means for each of the three
measurements (ADAS13, ABETA, TAU) for the ‘CN’ (𝜇!") and the ‘Dementia’ (𝜇#$)
groups. In addition, compute the standard deviation (ҵ**;) for these three measures
across the diagnostic groups. Assume that the data follow a Gaussian distribution:
   1 %&( *%+ -! 𝑓(w**9;)= ҵ**;√2𝜋Ү**; ' ,
,
with the means and standard deviation as computed above. Compute the decision boundary between the two disease groups for each of the three features (with the prior probabilities 𝜋.! = 𝜋#$ = 0.5).
Load the dataset ‘Dementia_test.csv’ that contains the same information for another 400 participants. After removing people with MCI, use the decision boundaries from above to compute accuracy, sensitivity and specificity for separating CN from Dementia for each of the three features. [8]
b) Using sklearn functions, train a LinearRegression to separate CN from Dementia subjects using ABETA and TAU values as inputs. Generate a scatter plot for ABETA and TAU using different colours for the two diagnostic groups. Compute the decision boundary based on the linear regression and add it to the plot. What is the accuracy, sensitivity and specificity of your model on the test data for separating CN from Dementia? [7]
c) The previous analyses ignored the subjects with MCI. Going back to the full dataset, compute means for all three groups for ABETA and TAU as well as the joint variance-covariance matrix Σ. Use these to compute linear decision boundaries between all pairs of classes (with the prior probabilities 𝜋.! = 𝜋/!0 =
𝜋#$ = 0.33) without using any models implemented in sklearn. Generate a new scatterplot and add the three decision boundaries. What is the accuracy, sensitivity and specificity for separating CN from Dementia with this method?
[10]

2. Here we complete implementations for different machine learning algorithms. The code with gaps can be found in the notebook Notebook_MPHY0041_2425_CW1.ipynb.
a) The function fit_LogReg_IWLS contains a few gaps that need to be filled for the function to work. This function implements Logistic Regression using iterative weighted least squares (IWLS) as introduced in the lectures. Use your function to train a model that separates Healthy controls from PD subjects in the LogReg_data.csv dataset (DX column indicates PD status, remaining columns are the features). Use the LogisticRegression implemented in sklearn to train a model on the same data. Make a scatter plot between the coefficients obtained from your implementation and the sklearn model. Comment on the
result.
(Hint: The operator @ can be used for matrix multiplications; the function np.linalg.pinv() computes the pseudo-inverse of the matrix: X-1). [7]
b) The function fit_LogReg_GRAD aims to implement Logistic Regression using gradient descent. However, there are still a few gaps in the code. Complete the computation of the cost (J(β)) as well as the update of the beta coefficients. (Hint: gradient descent aims to minimise the cost; however, Logistic Regression is fitted by maximising the log likelihood). Use your function to train a model that separates Healthy controls from PD subjects in the LogReg_data.csv dataset.
Run the training for 3000 iterations with 𝛼 = 0.1. Compare the obtained coefficients to the ones obtained from the IWLS implementation in part a). Comment on the result. [7]
c) The function fit_LogReg_GRAD_momentum aims to implement Logistic Regression using gradient descent with momentum. Extend your solution from (b) and add momentum to the optimization as introduced in the lectures. Use the parameter gamma as the trade-off between momentum and gradient. Train your model on the dataset Syn_Momentum.csv (two inputs X1, X2, and one target y). Run the gradient descent for 100 iterations and compare to the standard gradient descent from (b) also run for 100 iterations (both with 𝛼 = 0.001). How does the Loss evolve over the iterations? Explain your observation. [7]
d) When working with medical data we often encounter biases. This could mean that our target variable (𝑦) is accidentally correlated to another variable (𝑦'). We would like to estimate the model to predict 𝑦, while ignoring the effects introduced by 𝑦'. The trade-off between the objectives can be modified using the parameter 𝛿. Provide a Loss function for this scenario (where both 𝑦 and 𝑦'are fitted using a Logistic Regression). Complete the function fit_LogReg_GRAD_competing, which should implement these logistic regressions with gradient descent. Use the variable delta to implement the trade-off. Load the dataset sim_competitive.csv, it contains two input features (x1, x2) and two output features (y1, y2). Apply your function with different values for 𝛿 (0, 0.5, 0.75, 1.0). Make a scatter plot of the data and add the decision boundaries produced by the four models. [9]

3. This exercise uses T2-weighted MR images of the prostate and surrounding tissue (information here). The task to be solved is to automatically segment the prostate in these images. The input images are gray-scale images with 128x128 pixels (below left) and the output should be a binary matrix of size 128x128, where a 1 indicates the prostate (below right).
The promise1215.zip archive contains three sets of images: training, validation, test. For training, there are 30 MR images paired with their ground truth (i.e., masks). For instance, train/img_02_15.png is the MRI and train/lab_02_15.png is the corresponding ground truth. The function preprocess_img computes a series of filters (raw, sobel, gabor, difference of gaussians, etc.) to be used for the machine learning algorithm. For instance, application to the above image results in the following channels (Figure 1). Use the function provided in create_training_set to randomly sample 1000 patches of size 21x21 from the 30 training images to generate an initial dataset. The resulting dataset is heavily imbalanced (more background patches than target), the function sub_sample is used to generate a random subset of 1000 patches from the entire training data with an approximate 50-50 distribution.
a) Using sklearn, train an SVC model to segment the prostate. Optimize kernel choice (e.g., RBF or polynomial with degree 3) and the cost parameter (e.g., C in the range 0.1 to 1000) using an appropriate variant of cross-validation. Measure performance using the Area Under the ROC Curve (roc_auc) and plot the performance of the kernels depending on the C parameter. (Hint: when SVC seems to take an endless time to train, then change your choice of C parameters; large C parameters ® little regularization ® long training time. E.g., in Colab this took about 30 minutes). [10]
b) Based on your result from a) select the best model parameters and make predictions of the 10 images in the validation dataset. Compute the DICE coefficient and roc_auc for each image. Display the original image, the ground truth, and your segmentations for any 5 images in your validation set. Provide the average DICE coefficient and roc_auc for the entire validation dataset. (Hint: this can take a few minutes per image.) [8]
    
 Figure 1: Feature channels. Numbered from top left to bottom right. (1) raw input image (2) Scharr filter, (3-6) Gabor filter with frequency 0.2 in four directions (7-10) Gabor filter with frequency 0.4 in four directions (1**14) Gabor filter with frequency 0.6 in four directions (15-18) Gabor filter with frequency 0.8 in four directions (19) Local Binary Pattern (LBP) features, and (20) difference of gaussians.
c) Instead of the SVC, train a tree-based ensemble classifier and make predictions for the validation images. Report the average roc_auc and DICE coefficient for the entire validation set. What performs better: the SVC or the tree ensemble? Are tree ensembles or the SVC faster to train and apply? Explain why this is the case.
[7]
d) Use the tree-based ensemble method and explore how the amount of training data (i.e., sub sample size: 500, 1000, 2500, 5000), the patch dimensions (11x11, 17x17, 21x21, 27x27, 31x31) affects the performance on the validation set. [10]
e) As shown in the lectures, post-process your prediction using morphological operations and filters to achieve a better segmentation result. (Hint: some morphological operations are implemented in skimage.morphology; link). Report how your post-processing influences your DICE score on the validation
data. [5]
f) Using your best combination of training data size and patch dimension (from d) and post processing methods (from e), estimate the performance on unseen samples from the test set. Display the original image, the ground truth, and your segmentations for any 5 images in your test set. Provide average DICE coefficient for the entire test set. [5]

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代寫 CE235、代做 Python 語言編程
  • 下一篇:COMP3173 代做、代寫 Java/c++編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                黑人粗进入欧美aaaaa| 美女视频久久久| 91久久久久国产一区二区| 亚洲精品午夜国产va久久成人| 性欧美18一19性猛交| 中文区中文字幕免费看| 最近中文字幕在线观看| 亚洲综合视频在线播放| 凹凸精品一区二区三区| 国产麻豆剧传媒精品国产av| 九九九免费视频| 开心激情五月网| 日韩三级小视频| 性欧美丰满熟妇xxxx性久久久| 中国黄色片一级| 91精产国品一二三| 国产免费av观看| 欧美人妻一区二区| 午夜精品免费看| 一级黄色片毛片| 国产午夜手机精彩视频| 免费中文字幕在线| 无码人妻精品一区二区三区温州| 最近日韩免费视频| 国产美女免费无遮挡| 免费中文字幕在线观看| 亚洲18在线看污www麻豆| 亚洲一区视频在线播放| 亚洲一线在线观看| 国产成人免费看一级大黄| 黄色一级片免费在线观看| 日韩欧美三级在线观看| 亚洲乱妇老熟女爽到高潮的片| wwww.国产| 老牛影视av牛牛影视av| 伊人久久一区二区| 成人免费视频国产免费麻豆| 欧美性猛交xxxx乱大交91| 在线观看日本网站| 国产熟女一区二区三区四区| 色窝窝无码一区二区三区| 91福利免费观看| 蜜桃91麻豆精品一二三区| 中文字幕人妻一区二区三区| 国产视频1区2区| 无码少妇一区二区| 国产美女永久免费无遮挡| 少妇一区二区三区四区| www.美色吧.com| 日韩有码第一页| 99久在线精品99re8热| 欧美日韩色视频| 91在线公开视频| 日本少妇bbwbbw精品| 91网站免费入口| 日韩Av无码精品| 国产 中文 字幕 日韩 在线| 日本欧美www| 懂色av成人一区二区三区| 无码人妻丰满熟妇区五十路| 国产日韩一级片| 中文字幕免费在线看线人动作大片| 国产精品成人在线视频| 亚洲aⅴ在线观看| 九九九在线观看视频| 中文字幕第315页| 免费看黄色av| 国产a级黄色片| 中文字幕一级片| 青娱乐国产视频| 国产盗摄x88av| 在线观看视频二区| 欧美污在线观看| 国产免费久久久久| 亚洲精品视频网址| 日韩精品视频播放| 国产特黄大片aaaa毛片| 亚洲视频在线观看一区二区 | 亚洲欧美日本一区| 青青草av网站| 国内外成人免费在线视频| 一本色道久久综合亚洲| 无码任你躁久久久久久久| 精品少妇久久久| 国产精品suv一区二区三区| 亚洲精品成人区在线观看| 日韩人妻一区二区三区| 久久久久亚洲av片无码v| 丰满人妻一区二区三区四区53| 伊人久久综合视频| 欧美性猛交xxx乱久交| 高清乱码毛片入口| 中文字幕a级片| 五月天婷婷亚洲| 日韩欧美中文视频| 欧美特级黄色片| 免费日韩一级片| 国产三级黄色片| 国产对白videos麻豆高潮| 亚洲中文无码av在线| 真实国产乱子伦对白在线| 天天干,夜夜爽| 日本少妇久久久| 欧美 日韩 人妻 高清 中文| 九九热国产在线| 黄色一级片免费在线观看| 国产精品丝袜黑色高跟鞋| 国产黄a三级三级| 国产suv精品一区二区69| www.com在线观看| www.久久国产| jizz国产在线| 国产77777| 国产高清av片| 国产乱人乱偷精品视频| 国产三级精品三级在线| 国产黄色小视频在线观看| 国产精品人人妻人人爽| 国产精品久久久久久99| 国产香蕉精品视频| 久操免费在线视频| 免费黄色a级片| 免费又黄又爽又猛大片午夜| 人妻精品久久久久中文字幕| 日韩高清精品免费观看| 少妇无套高潮一二三区| 天天看天天摸天天操| 永久av免费网站| 亚洲一线在线观看| 丰满少妇高潮一区二区| 国产调教在线观看| 精品少妇人妻av一区二区三区| 精品少妇人妻av一区二区三区 | 国产一级在线免费观看| 黑人乱码一区二区三区av| 久久久久久久久久久久久久久国产| 精品美女久久久久| 欧美日韩激情在线观看| 日日骚av一区二区| 怡红院亚洲色图| 夜夜爽久久精品91| 国产精品丝袜一区二区| 久久午夜鲁丝片| 天天摸夜夜添狠狠添婷婷| 中文字幕第24页| 成年人小视频在线观看| 久久99精品波多结衣一区| 欧美精品久久久久性色| 亚洲xxx在线观看| 99久久免费国产精精品| 国产麻豆91视频| 欧美熟妇另类久久久久久多毛 | 亚洲国产av一区| 国产av 一区二区三区| 久久精品免费av| 一区精品在线观看| www.国产毛片| 久久亚洲精品大全| 中文字幕 国产| 亚洲精品国偷拍自产在线观看蜜桃 | 欧美一区二区三区爽爽爽| 伊人久久一区二区三区| 国产成人三级在线播放| 日本成人xxx| 亚洲精品激情视频| 国产又粗又猛又黄又爽| 午夜不卡福利视频| 国产精品久久久久久久久夜色| 免费在线观看国产精品| 亚洲美女在线播放| 久久久久久婷婷| 亚洲日本视频在线观看| 九九热精品在线观看| 中文字幕日韩一级| 久久久久亚洲AV成人无在| 中文字幕国产高清| 久久人人爽人人爽人人| 亚洲一级理论片| 日本高清www| 国产成人av一区二区三区不卡| 色哟哟网站在线观看| 国产成人av片| 中文字幕第66页| 美女网站视频色| hs视频在线观看| 天天综合天天色| 激情五月色婷婷| 亚洲天堂日韩av| 日本一级特级毛片视频| 国产第一页浮力| 亚洲精品国产一区二| 美国黑人一级大黄| 一级二级三级视频| 免费看91的网站| 99久久精品无免国产免费| 五月综合色婷婷| 精品久久久噜噜噜噜久久图片| 久久久久99精品成人片我成大片| 亚洲精品视频三区| 欧美高清视频一区二区三区|