99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做 MPHY0041、代寫 C++設計編程
代做 MPHY0041、代寫 C++設計編程

時間:2024-12-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



 UCL DEPARTMANT OF MEDICAL PHYSICS AND
BIOMEDICAL ENGINEERING
Module Code: Module Title : Coursework Title : Lecturer:
Date Handed out: Student ID (Not Name)
MPHY0041
Machine Learning in Medical Imaging Assessed Coursework
Dr. Andre Altmann
Friday, October 25th 2024
Undergraduate / Postgraduate Assessed Coursework Tracking Sheet
              Submission Instruction: Before the submission deadline, you should digitally submit your source code and generated figures (a single jupyter notebook file including your written answers). In case you submit multiple files, all files need to be combined in one single zip file and submitted on the module page at UCL Moodle.
Coursework Deadline: Friday, November 29th 2024 at 16:00 at UCL Moodle submission section
Date Received
Date Returned to Student:
The Department of Medical Physics and Biomedical Engineering follows the UCL Academic Manual with regards to plagiarism and coursework late submission. UCL Policy on Plagiarism
UCL Policy on Late Submission of Coursework
If you are unable to submit on-time due to extenuating circumstances (EC), please refer to the UCL Policy on Extenuating Circumstances and contact our EC Secretary at medphys.teaching@ucl.ac.uk as soon as possible.
UCL Policy on Extenuating Circumstances
Please indicate what areas of your coursework you particularly would like feedback on:
Mark (%):
Please note that the mark is provisional and could be changed when the exam boards meet to moderate marks.
                
Please note: This is an AI Category 1 coursework (i.e., AI technologies cannot be used to solve the questions): https://www.ucl.ac.uk/teaching-learning/generative-ai-hub/using- ai-tools-assessment.
Please submit a single jupyter notebook file for Exercises 1, 2, and 3. The file should contain code, plots and comments that help the understanding of your answers. You can give your written answers as a Markdown within the jupyter notebook.
The provided jupyter notebook Notebook_MPHY0041_2425_CW1.ipynb contains the individual gap codes/functions for Exercise 2 and the functions provided for Exercise 3. Please use this notebook as the basis for your submission.
1. Load the dataset ‘Dementia_train.csv’ it contains diagnosis (DX), a cognitive score (ADAS13) and two cerebrospinal fluid (CSF) measurements for two proteins: amyloid and tau. There are three diagnostic labels: CN, MCI, and Dementia.
a) Remove MCI subjects from the dataset. Compute means for each of the three
measurements (ADAS13, ABETA, TAU) for the ‘CN’ (𝜇!") and the ‘Dementia’ (𝜇#$)
groups. In addition, compute the standard deviation (ҵ**;) for these three measures
across the diagnostic groups. Assume that the data follow a Gaussian distribution:
   1 %&( *%+ -! 𝑓(w**9;)= ҵ**;√2𝜋Ү**; ' ,
,
with the means and standard deviation as computed above. Compute the decision boundary between the two disease groups for each of the three features (with the prior probabilities 𝜋.! = 𝜋#$ = 0.5).
Load the dataset ‘Dementia_test.csv’ that contains the same information for another 400 participants. After removing people with MCI, use the decision boundaries from above to compute accuracy, sensitivity and specificity for separating CN from Dementia for each of the three features. [8]
b) Using sklearn functions, train a LinearRegression to separate CN from Dementia subjects using ABETA and TAU values as inputs. Generate a scatter plot for ABETA and TAU using different colours for the two diagnostic groups. Compute the decision boundary based on the linear regression and add it to the plot. What is the accuracy, sensitivity and specificity of your model on the test data for separating CN from Dementia? [7]
c) The previous analyses ignored the subjects with MCI. Going back to the full dataset, compute means for all three groups for ABETA and TAU as well as the joint variance-covariance matrix Σ. Use these to compute linear decision boundaries between all pairs of classes (with the prior probabilities 𝜋.! = 𝜋/!0 =
𝜋#$ = 0.33) without using any models implemented in sklearn. Generate a new scatterplot and add the three decision boundaries. What is the accuracy, sensitivity and specificity for separating CN from Dementia with this method?
[10]

2. Here we complete implementations for different machine learning algorithms. The code with gaps can be found in the notebook Notebook_MPHY0041_2425_CW1.ipynb.
a) The function fit_LogReg_IWLS contains a few gaps that need to be filled for the function to work. This function implements Logistic Regression using iterative weighted least squares (IWLS) as introduced in the lectures. Use your function to train a model that separates Healthy controls from PD subjects in the LogReg_data.csv dataset (DX column indicates PD status, remaining columns are the features). Use the LogisticRegression implemented in sklearn to train a model on the same data. Make a scatter plot between the coefficients obtained from your implementation and the sklearn model. Comment on the
result.
(Hint: The operator @ can be used for matrix multiplications; the function np.linalg.pinv() computes the pseudo-inverse of the matrix: X-1). [7]
b) The function fit_LogReg_GRAD aims to implement Logistic Regression using gradient descent. However, there are still a few gaps in the code. Complete the computation of the cost (J(β)) as well as the update of the beta coefficients. (Hint: gradient descent aims to minimise the cost; however, Logistic Regression is fitted by maximising the log likelihood). Use your function to train a model that separates Healthy controls from PD subjects in the LogReg_data.csv dataset.
Run the training for 3000 iterations with 𝛼 = 0.1. Compare the obtained coefficients to the ones obtained from the IWLS implementation in part a). Comment on the result. [7]
c) The function fit_LogReg_GRAD_momentum aims to implement Logistic Regression using gradient descent with momentum. Extend your solution from (b) and add momentum to the optimization as introduced in the lectures. Use the parameter gamma as the trade-off between momentum and gradient. Train your model on the dataset Syn_Momentum.csv (two inputs X1, X2, and one target y). Run the gradient descent for 100 iterations and compare to the standard gradient descent from (b) also run for 100 iterations (both with 𝛼 = 0.001). How does the Loss evolve over the iterations? Explain your observation. [7]
d) When working with medical data we often encounter biases. This could mean that our target variable (𝑦) is accidentally correlated to another variable (𝑦'). We would like to estimate the model to predict 𝑦, while ignoring the effects introduced by 𝑦'. The trade-off between the objectives can be modified using the parameter 𝛿. Provide a Loss function for this scenario (where both 𝑦 and 𝑦'are fitted using a Logistic Regression). Complete the function fit_LogReg_GRAD_competing, which should implement these logistic regressions with gradient descent. Use the variable delta to implement the trade-off. Load the dataset sim_competitive.csv, it contains two input features (x1, x2) and two output features (y1, y2). Apply your function with different values for 𝛿 (0, 0.5, 0.75, 1.0). Make a scatter plot of the data and add the decision boundaries produced by the four models. [9]

3. This exercise uses T2-weighted MR images of the prostate and surrounding tissue (information here). The task to be solved is to automatically segment the prostate in these images. The input images are gray-scale images with 128x128 pixels (below left) and the output should be a binary matrix of size 128x128, where a 1 indicates the prostate (below right).
The promise1215.zip archive contains three sets of images: training, validation, test. For training, there are 30 MR images paired with their ground truth (i.e., masks). For instance, train/img_02_15.png is the MRI and train/lab_02_15.png is the corresponding ground truth. The function preprocess_img computes a series of filters (raw, sobel, gabor, difference of gaussians, etc.) to be used for the machine learning algorithm. For instance, application to the above image results in the following channels (Figure 1). Use the function provided in create_training_set to randomly sample 1000 patches of size 21x21 from the 30 training images to generate an initial dataset. The resulting dataset is heavily imbalanced (more background patches than target), the function sub_sample is used to generate a random subset of 1000 patches from the entire training data with an approximate 50-50 distribution.
a) Using sklearn, train an SVC model to segment the prostate. Optimize kernel choice (e.g., RBF or polynomial with degree 3) and the cost parameter (e.g., C in the range 0.1 to 1000) using an appropriate variant of cross-validation. Measure performance using the Area Under the ROC Curve (roc_auc) and plot the performance of the kernels depending on the C parameter. (Hint: when SVC seems to take an endless time to train, then change your choice of C parameters; large C parameters ® little regularization ® long training time. E.g., in Colab this took about 30 minutes). [10]
b) Based on your result from a) select the best model parameters and make predictions of the 10 images in the validation dataset. Compute the DICE coefficient and roc_auc for each image. Display the original image, the ground truth, and your segmentations for any 5 images in your validation set. Provide the average DICE coefficient and roc_auc for the entire validation dataset. (Hint: this can take a few minutes per image.) [8]
    
 Figure 1: Feature channels. Numbered from top left to bottom right. (1) raw input image (2) Scharr filter, (3-6) Gabor filter with frequency 0.2 in four directions (7-10) Gabor filter with frequency 0.4 in four directions (1**14) Gabor filter with frequency 0.6 in four directions (15-18) Gabor filter with frequency 0.8 in four directions (19) Local Binary Pattern (LBP) features, and (20) difference of gaussians.
c) Instead of the SVC, train a tree-based ensemble classifier and make predictions for the validation images. Report the average roc_auc and DICE coefficient for the entire validation set. What performs better: the SVC or the tree ensemble? Are tree ensembles or the SVC faster to train and apply? Explain why this is the case.
[7]
d) Use the tree-based ensemble method and explore how the amount of training data (i.e., sub sample size: 500, 1000, 2500, 5000), the patch dimensions (11x11, 17x17, 21x21, 27x27, 31x31) affects the performance on the validation set. [10]
e) As shown in the lectures, post-process your prediction using morphological operations and filters to achieve a better segmentation result. (Hint: some morphological operations are implemented in skimage.morphology; link). Report how your post-processing influences your DICE score on the validation
data. [5]
f) Using your best combination of training data size and patch dimension (from d) and post processing methods (from e), estimate the performance on unseen samples from the test set. Display the original image, the ground truth, and your segmentations for any 5 images in your test set. Provide average DICE coefficient for the entire test set. [5]

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代寫 CE235、代做 Python 語言編程
  • 下一篇:COMP3173 代做、代寫 Java/c++編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                青青青爽久久午夜综合久久午夜| 丰满放荡岳乱妇91ww| 国产精品美女久久久久久久| 欧美日韩亚洲综合在线| 懂色av一区二区夜夜嗨| 日本免费在线视频不卡一不卡二| 亚洲日穴在线视频| 欧美一区二区在线免费播放| 91成人网在线| 91丨九色丨国产丨porny| 国产乱码字幕精品高清av| 蜜桃av一区二区三区| 亚洲大片精品永久免费| 一区二区三区在线视频观看| 中文字幕日韩精品一区| 日韩亚洲欧美中文三级| 欧美精品vⅰdeose4hd| 91亚洲午夜精品久久久久久| 福利电影一区二区| 国产美女娇喘av呻吟久久| 理论片日本一区| 日本aⅴ亚洲精品中文乱码| 国产精品成人在线观看| 国产欧美一区二区在线| 26uuu国产在线精品一区二区| 91精品国产色综合久久久蜜香臀| 欧美日韩国产区一| 欧美日韩一区视频| 欧美视频精品在线观看| 欧美性一二三区| 欧美亚洲动漫另类| 欧美日韩激情一区| 欧美日韩在线播放三区四区| 欧美高清精品3d| 欧美性生活大片视频| 欧美最新大片在线看| 一本色道久久综合亚洲aⅴ蜜桃| 波波电影院一区二区三区| 丁香六月综合激情| 91香蕉国产在线观看软件| 99精品视频在线观看| 色综合久久九月婷婷色综合| 色婷婷综合激情| 欧美乱妇20p| 欧美一级国产精品| 久久久久国产一区二区三区四区| 久久奇米777| 中文字幕在线免费不卡| 国产色爱av资源综合区| 久久精品一二三| 国产精品麻豆一区二区| 亚洲最大色网站| 日韩成人免费电影| 精品无码三级在线观看视频 | 精品一区二区综合| 国模大尺度一区二区三区| 国产乱码一区二区三区| 菠萝蜜视频在线观看一区| 色婷婷国产精品| 欧美人动与zoxxxx乱| 欧美成人伊人久久综合网| 精品日韩欧美在线| 精品少妇一区二区三区| 久久精品日韩一区二区三区| 成人欧美一区二区三区小说| 亚洲午夜久久久久久久久电影网| 美女任你摸久久| 国产一区二区视频在线播放| 99久久夜色精品国产网站| 欧美日韩高清在线播放| 久久久午夜精品理论片中文字幕| 亚洲色图20p| 日产国产欧美视频一区精品| 精品伊人久久久久7777人| 色综合激情久久| 精品少妇一区二区三区日产乱码 | 欧美私人免费视频| 26uuu精品一区二区| 亚洲愉拍自拍另类高清精品| 国产综合久久久久影院| 91一区二区三区在线观看| 欧美肥胖老妇做爰| 亚洲欧美在线视频| 免费在线看成人av| 91美女片黄在线观看| 欧美变态tickle挠乳网站| 一个色综合av| 成人性生交大片免费看视频在线 | 欧美成人一区二区三区| 亚洲免费在线播放| 国产乱色国产精品免费视频| 欧美性色欧美a在线播放| 日韩欧美综合在线| 一级女性全黄久久生活片免费| 国产成人高清在线| 欧美一区二区在线观看| 亚洲一区二区三区爽爽爽爽爽| 国产精品资源在线| 欧美一级日韩一级| 亚洲国产视频a| 91丨九色丨蝌蚪丨老版| 欧美日韩大陆一区二区| 亚洲精选视频免费看| 国产精品456| 日韩一区二区三区免费看| 依依成人综合视频| www.日韩av| 中文字幕不卡的av| 美女尤物国产一区| 91一区一区三区| 亚洲精品一线二线三线| 日本不卡一二三| 欧美精品粉嫩高潮一区二区| 亚洲一区在线视频| 91成人国产精品| 亚洲精品一二三| av资源站一区| 国产精品久久久久久户外露出| 美日韩一区二区三区| 日韩三级在线观看| 精品一区二区免费在线观看| 日韩一级成人av| 午夜精品久久久久久久久久久| 欧美最猛性xxxxx直播| 一区二区三区四区av| 欧美亚洲日本国产| 一区二区三区高清在线| 久久精品亚洲一区二区三区浴池| 三级欧美韩日大片在线看| 色综合中文字幕| 一区二区三区精密机械公司| 91国产精品成人| 一区二区三区日韩| 欧美性猛交xxxxxxxx| 亚洲欧美激情在线| av不卡一区二区三区| 国产精品久久久久久户外露出 | 精品少妇一区二区三区 | 日韩欧美国产小视频| 国产黑丝在线一区二区三区| 中文字幕五月欧美| 欧美高清dvd| 风间由美一区二区三区在线观看 | 亚洲日本丝袜连裤袜办公室| 欧美日韩电影一区| 国产激情视频一区二区三区欧美| 亚洲欧美激情小说另类| 欧美一区二区成人| 9i看片成人免费高清| 蜜臀av在线播放一区二区三区| 国产精品乱码久久久久久| 欧美日韩一区高清| 国产精品中文字幕一区二区三区| 亚洲欧美视频一区| 欧美成人艳星乳罩| aaa欧美大片| 九九精品视频在线看| 综合激情成人伊人| 精品免费日韩av| 色94色欧美sute亚洲线路一久| 免费在线欧美视频| 亚洲另类春色国产| 久久免费精品国产久精品久久久久| 欧洲另类一二三四区| 国产成人亚洲综合a∨婷婷图片| 亚洲电影一区二区三区| 国产欧美日韩精品一区| 欧美日本乱大交xxxxx| av激情亚洲男人天堂| 狠狠色综合播放一区二区| 亚洲福中文字幕伊人影院| 亚洲国产精品传媒在线观看| 正在播放亚洲一区| 色综合久久精品| 风间由美性色一区二区三区| 免费欧美高清视频| 亚洲曰韩产成在线| 国产精品嫩草久久久久| 亚洲精品一区二区三区香蕉| 欧美性猛交xxxx黑人交| 不卡在线观看av| 国产一区二区精品在线观看| 日日摸夜夜添夜夜添亚洲女人| 成人免费一区二区三区视频 | 精品播放一区二区| 欧美嫩在线观看| 在线一区二区三区四区五区| 国产99久久久国产精品免费看 | 国产一区二区视频在线播放| 日韩成人免费电影| 亚洲第一成年网| 亚洲男女毛片无遮挡| 成人欧美一区二区三区视频网页| 国产人久久人人人人爽| 精品国产sm最大网站| 日韩欧美一级在线播放| 在线成人高清不卡| 欧美性大战久久久久久久蜜臀| 91美女在线看| 在线精品视频免费观看|