合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫 2XC3、代做 Python 設計編程

        時間:2024-04-14  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Computer Science 2XC3: Final Project
        This project will include a final report and your code. Your final report will have the following. You will
        be submitting .py (NOT *.ipynb) files for this final project.
        • Title page
        • Table of Content
        • Table of Figures
        • An executive summary highlighting some of the main takeaways of your experiments/analysis
        • An appendix explaining to the TA how to navigate your code.
        For each experiment, include a clear section in your lab report which pertains to that experiment. The report should look professional and readable.
        PLEASE NOTE: This is the complete Part I and II. Complete Parts 1 – 5 in group. Part 6 needs to be completed individual. Please refer to the plagiarism policy in Syllabus.
        Part 1 : Single source shortest path algorithms
        Part 1.1: In this part you will implement variation of Dijkstra’s algorithm. It is a popular shortest path algorithm where the current known shortest path to each node is updated once new path is identified. This updating is called relaxing and in a graph with 𝑛 nodes it can occur at most 𝑛 − 1 times. In this part implement a function dijkstra (graph, source, k) which takes the graph and source as an input and where each node can be relaxed on only k times where, 0 < 𝑘 < Ү**; − 1. This function returns a distance and path dictionary which maps a node (which is an integer) to the distance and the path (sequence of nodes).
        Part 1.2: Consider the same restriction as previous and implement a variation of Bellman Ford’s algorithm. This means implement a function bellman_ford(graph, source, k) which take the graph and source as an input and finds the path where each node can be relaxed only k times, where, 0 < 𝑘 < Ү**; − 1. This function also returns a distance and path dictionary which maps a node (which is an integer) to the distance and the path (sequence of nodes).
        Part 1.3: Design an experiment to analyze the performance of functions written in Part 1.1 and 1.2. You should consider factors like graph size, graph. density and value of k, that impact the algorithm performance in terms of its accuracy, time and space complexity.
        Part 2: All-pair shortest path algorithm
        Dijkstra’s and Bellman Ford’s are single source shortest path algorithms. However, many times we are faced with problems that require us to solve shortest path between all pairs. This means that the algorithm needs to find the shortest path from every possible source to every possible destination. For every pair of vertices u and v, we want to compute shortest path 𝑑𝑖w**4;w**5;𝑎𝑛𝑐Ү**;(w**6;, w**7;) and the second-to-last vertex on the shortest path w**1;w**3;Ү**;w**7;𝑖w**0;w**6;w**4;(w**6;, w**7;). How would you design an all-pair shortest path algorithm for both positive edge weights and negative edge weights? Implement a function that can address this. Dijkstra has complexity Ɵ(𝐸 + 𝑉𝑙w**0;𝑔𝑉), or Ɵ (𝑉2) if the graph is dense and Bellman-Ford has complexity Ɵ (𝑉𝐸) , or Ɵ(𝑉3) if the graph is dense. Knowing this, what would you conclude the complexity of your two algorithms to be for dense graphs? Explain your conclusion in your report. You do not need to verify this empirically.
              
        Part 3: A* algorithm
        In this part, you will analyze and experiment with a modification of Dijkstra’s algorithm called the A* (we will cover this algorithm in next lecture, but you are free to do your own research if you want to get started on it). The algorithm essentially, is an “informed” search algorithm or “best-first search”, and is helpful to find best path between two given nodes. Best path can be defined by shortest path, best time, or least cost. The most important feature of A* is a heuristic function that can control it’s behavior.
        Part 3.1: Write a function A_Star (graph, source, destination, heuristic) which takes in a directed weighted graph, a sources node, a destination node , and a heuristic “function”. Assume h is a dictionary which takes in a node (an integer), and returns a float. Your method should return a 2-tuple where the first element is a predecessor dictionary, and the second element is the shortest path the algorithm determines from source to destination. This implementation should be using priority queue.
        Part 3.2: In your report explain the following:
        • What issues with Dijkstra’s algorithm is A* trying to address?
        • How would you empirically test Dijkstra’s vs A*?
        • If you generated an arbitrary heuristic function (like randomly generating weights), how would
        Dijkstra’s algorithm compare to A*?
        • What applications would you use A* instead of Dijkstra’s?
        Part 4: Compare Shortest Path Algorithms
        In this part, you will compare the performance of Dijkstra’s and A* algorithm. While generating random graphs can give some insights about how algorithms might be performing, not all algorithms can be assessed using randomly generated graphs, especially for A* algorithm where heuristic function is important. In this part you will compare the performance of the two algorithms on a real-world data set. Enclosed are a set of data files that contain data on London Subway system. The data describes the subway network with about 300 stations, and the lines represent the connections between them. Represent each station as a node in a graph, and the edge between stations should exists if two stations are connected. To find weights of different edges, you can use latitude and longitude for each station to find the distance travelled between the two stations This distance can serve as the weight for a given edge. Finally, to compute the heuristic function, you can use the physical direct distance (NOT the driving distance) between the source and a given station. Therefore, you can create a hashmap or a function, which serves as a heuristic function for A*, takes the input as a given station and returns the distance between source and the given station.
        Once you have generated the weighted graph and the heuristic function, use it as an input to both A* and Dijkstra’s algorithm to compare their performance. It might be useful to check all pairs shortest paths, and compute the time taken by each algorithm for all combination of stations. Using the experiment design, answer the following questions:
        • When does A* outperform Dijkstra? When are they comparable? Explain your observation why you might be seeing these results.
        • What do you observe about stations which are 1) on the same lines, 2) on the adjacent lines, and 3) on the line which require several transfers?
        • Using the “line” information provided in the dataset, compute how many lines the shortest path uses in your results/discussion?
            
         Figure 1: London Subway Map
        Part 5: Organize your code as per UML diagram
        Organize you code as per the below Unified Modelling Language (UML) diagram in Figure 2. Furthermore, consider the points listed below and discuss these points in a section labelled Part 4 in your report (where appropriate).
        • Instead of re-writing A* algorithm for this part, treat the class from UML as an “adapter”.
        • Discuss what design principles and patterns are being used in the diagram.
        • The UML is limited in the sense that graph nodes are represented by the integers. How would you
        alter the UML diagram to accommodate various needs such as nodes being represented Strings or carrying more information than their names.? Explain how you would change the design in Figure 2 to be robust to these potential changes.
        • Discuss what other types of graphs we could have implement “Graph”. What other implementations exist?
         
         Figure 2: UML Diagram
        Part 6: Unknown Algorithm (To work on Individually)
        In the code posted with this document, you will find a w**6;𝑛𝑘𝑛w**0;w**8;𝑛() function. It takes a graph as input. Do some reverse engineering. Try to figure out what exactly this function is accomplishing. You should explore the possibility of testing it on graphs with negative edge weights (create some small graphs manually for this). Determine the complexity of this function by running some experiments as well as inspecting the code. Given what this code does, is the complexity surprising? Why or why not?
         Grade Breakup:
           Part 1: Single source shortest path algorithms Part 2: All-pair shortest path algorithm
        Part 3: A* algorithm
        Part 4: Compare Shortest Path Algorithms
        Part 5: Organize your code as per UML diagram Part 6: Unknown Algorithm
        Group 25 Group 15 Group 20 Group 30 Group 10
        Individual 50
        Part
        Submission Type
        Points
                             
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

















         

        掃一掃在手機打開當前頁
      1. 上一篇:代做CSE 470、djava/Python 編程
      2. 下一篇:CS 2550代做、代寫SQL設計編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 亚洲一区精品视频在线| 国产一区二区三区免费在线观看| 91在线视频一区| 又紧又大又爽精品一区二区| 国产一区二区三区不卡AV| 一区二区三区人妻无码| 国产成人一区二区精品非洲| 久久精品人妻一区二区三区| 久久精品无码一区二区三区| 无码精品不卡一区二区三区| 伊人色综合一区二区三区| 一区 二区 三区 中文字幕 | 性色AV一区二区三区天美传媒| 国产一区二区视频在线观看 | 视频一区二区三区免费观看| 久久精品亚洲一区二区| 久久久人妻精品无码一区| 国产精品亚洲一区二区三区 | 亚洲一区二区三区无码影院| 精品国产福利在线观看一区| 国产怡春院无码一区二区| 99久久精品午夜一区二区| 精品三级AV无码一区| 亚洲一区二区三区在线| 无码精品国产一区二区三区免费| 亚洲综合一区二区精品导航| 亚洲一区综合在线播放| 欧亚精品一区三区免费| 国产香蕉一区二区精品视频| 国产免费av一区二区三区| 久久人妻av一区二区软件| 色欲AV蜜臀一区二区三区| 中文字幕无线码一区2020青青| 夜色福利一区二区三区| 国产乱码一区二区三区| 五十路熟女人妻一区二区| 中日av乱码一区二区三区乱码| 制服丝袜一区二区三区| 亚洲AV无码一区二区三区性色| 国产SUV精品一区二区88| 精品国产香蕉伊思人在线在线亚洲一区二区|