99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CSC420編程代寫、c/c++,Java程序代做

時間:2024-01-23  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Intro to Image Understanding (CSC420)
Assignment 1
Due Date: Jan 26th, 2024, 11:59:00 pm
Total: 120 marks
General Instructions:
• You are allowed to work directly with one other person to discuss the questions. However, you are still expected to write the solutions/code/report in your own words; i.e.
no copying. If you choose to work with someone else, you must indicate this in your
assignment submission. For example, on the first line of your report file (after your
own name and information, and before starting your answer to Q1), you should have
a sentence that says: “In solving the questions in this assignment, I worked together
with my classmate [name & student number]. I confirm that I have written the solutions/code/report in my own words”.
• Your submission should be in the form of an electronic report (PDF), with the answers
to the specific questions (each question separately), and a presentation and discussion
of your results. For this, please submit a file named report.pdf to MarkUs directly.
• Submit documented codes that you have written to generate your results separately.
Please store all of those files in a folder called assignment1, zip the folder and then
submit the file assignment1.zip to MarkUs. You should include a README.txt
file (inside the folder) which details how to run the submitted codes.
• Do not worry if you realize you made a mistake after submitting your zip file; you can
submit multiple times on MarkUs.
Part I: Theoretical Problems (60 marks)
[Question 1] Convolution (10 marks)
[1.a] (5 marks) Calculate and plot the convolution of x[n] and h[n] specified below:
x[n] = (
1 −3 ≤ n ≤ 3
0 otherwise
h[n] = (
1 −2 ≤ n ≤ 2
0 otherwise
(1)
[1.b] (5 marks) Calculate and plot the convolution of x[n] and h[n] specified below:
x[n] = (
1 −3 ≤ n ≤ 3
0 otherwise
h[n] = (
2 − |n| −2 ≤ n ≤ 2
0 otherwise
(2)
1
[Question 2] LTI Systems (15 marks)
We define a system as something that takes an input signal, e.g. x(n), and produces an
output signal, e.g. y(n). Linear Time-Invariant (LTI) systems are a class of systems that
are both linear and time-invariant. In linear systems, the output for a linear combination of
inputs is equal to the linear combination of individual responses to those inputs. In other
words, for a system T, signals x1(n) and x2(n), and scalars a1 and a2, system T is linear if
and only if:
T[a1x1(n) + a2x2(n)] = a1T[x1(n)] + a2T[x2(n)]
Also, a system is time-invariant if a shift in its input merely shifts the output; i.e. If T[x(n)] =
y(n), system T is time-invariant if and only if:
T[x(n − n0)] = y(n − n0)
[2.a] (5 marks) Consider a discrete linear time-invariant system T with discrete input signal
x(n) and impulse response h(n). Recall that the impulse response of a discrete system
is defined as the output of the system when the input is an impulse function δ(n), i.e.
T[δ(n)] = h(n), where:
δ(n) = (
1, if n = 0,
0, else.
Prove that T[x(n)] = h(n) ∗ x(n), where ∗ denotes convolution operation.
Hint: represent signal x(n) as a function of δ(n).
[2.b] (5 marks) Is Gaussian blurring linear? Is it time-invariant? Make sure to include your
justifications.
[2.c] (5 marks) Is time reversal, i.e. T[x(n)] = x(−n), linear? Is it time-invariant? Make
sure to include your justifications.
[Question 3] Polynomial Multiplication and Convolution (15 marks)
Vectors can be used to represent polynomials. For example, 3rd-degree polynomial (a3x
3 +
a2x
2 + a1x + a0) can by represented by vector [a3, a2, a1, a0].
If u and v are vectors of polynomial coefficients, prove that convolving them is equivalent to
multiplying the two polynomials they each represent.
Hint: You need to assume proper zero-padding to support the full-size convolution.
2
[Question 4] Laplacian Operator (20 marks)
The Laplace operator is a second-order differential operator in the “n”-dimensional Euclidean
space, defined as the divergence (∇) of the gradient (∇f). Thus if f is a twice-differentiable
real-valued function, then the Laplacian of f is defined by:
where the latter notations derive from formally writing:
Now, consider a 2D image I(x, y) and its Laplacian, given by ∆I = Ixx+Iyy. Here the second
partial derivatives are taken with respect to the directions of the variables x, y associated
with the image grid for convenience. Show that the Laplacian is in fact rotation invariant.
In other words, show that ∆I = Irr + Ir, where r and r
′ are any two orthogonal directions.
Hint: Start by using polar coordinates to describe a chosen location (x, y). Then use the
chain rule.
Part II: Implementation Tasks (60 marks)
[Question 5] Canny Edge Detector Robustness (10 marks)
Using the sample code provided in Tutorial 2, examine the sensitivity of the Canny edge
detector to Gaussian noise. To do so, take an image of your choice, and add i.i.d Gaussian
noise to each pixel. Analyze the performance of the edge detector as a function of noise variance. Include your observations and three sample outputs (corresponding to low, medium,
and high noise variances) in the report.
[Question 6] Edge Detection (50 marks)
In this question, the goal is to implement a rudimentary edge detection process that uses a
derivative of Gaussian, through a series of steps. For each step (excluding step 1) you are
supposed to test your implementation on the provided image, and also on one image of your
own choice. Include the results in your report.
Step I - Gaussian Blurring (10 marks): Implement a function that returns a 2D Gaussian matrix for input size and scale σ. Please note that you should not use any of the
existing libraries to create the filter, e.g. cv2.getGaussianKernel(). Moreover, visualize this
2D Gaussian matrix for two choices of σ with appropriate filter sizes. For the visualization,
3
you may consider a 2D image with a colormap, or a 3D graph. Make sure to include the
color bar or axis values.
Step II - Gradient Magnitude (10 marks): In the lectures, we discussed how partial
derivatives of an image are computed. We know that the edges in an image are from the
sudden changes of intensity and one way to capture that sudden change is to calculate the
gradient magnitude at each pixel. The edge strength or gradient magnitude is defined as:

where gx and gy are the gradients of image f(x, y) along x and y-axis direction respectively.
Using the Sobel operator, gx and gy can be computed as:
Implement a function that receives an image f(x, y) as input and returns its gradient g(x, y)
magnitude as output using the Sobel operator. You are supposed to implement the convolution required for this task from scratch, without using any existing libraries.
Step III - Threshold Algorithm (20 marks): After finding the image gradient, the
next step is to automatically find a threshold value so that edges can be determined. One
algorithm to automatically determine image-dependent threshold is as follows:
1. Let the initial threshold τ0 be equal to the average intensity of gradient image g(x, y),
as defined below:
where h and w are the height and width of the image under consideration.
2. Set iteration index i = 0, and categorize the pixels into two classes, where the lower
class consists of the pixels whose gradient magnitudes are less than τ0, and the upper
class contains the rest of the pixels.
3. Compute the average gradient magnitudes mL and mH of lower and upper classes,
respectively.
4. Set iteration i = i + 1 and update threshold value as:
τi =
mL + mH
2
5. Repeat steps 2 to 4 until |τi − τi−1| ≤ ϵ is satisfied, where ϵ → 0; take τi as final
threshold and denote it by τ .
4
Once the final threshold is obtained, each pixel of gradient image g(x, y) is compared
with τ . The pixels with a gradient higher than τ are considered as edge point and
is represented as white pixel; otherwise, it is designated as black. The edge-mapped
image E(x, y), thus obtained is:
E(x, y) = (
255, if g(x, y) ≥ τ
0, otherwise
Implement the aforementioned threshold algorithm. The input to this algorithm is the gradient image g(x, y) obtained from step II, and the output is a black and white edge-mapped
image E(x, y).
Step IV - Test (10 marks): Use the image provided along with this assignment, and also
one image of your choice to test all the previous steps (I to III) and to visualize your results
in the report. Convert the images to grayscale first. Please note that the input to each step
is the output of the previous step. In a brief paragraph, discuss how the algorithm works for
these two examples and highlight its strengths and/or its weaknesses.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:莆田純原鞋的3個常見進貨渠道-在哪買?多少錢STM潮鞋服終端供應鏈
  • 下一篇:代寫IRP 1 Coursework 01編程、代做Python程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          午夜老司机精品| 欧美激情一区二区三区全黄| 在线观看日韩av电影| 欧美.com| 欧美在线看片| 99re成人精品视频| 在线免费观看日本欧美| 国产精品v欧美精品v日韩| 久久躁日日躁aaaaxxxx| 亚洲欧美国产日韩天堂区| 亚洲一二三区在线| 亚洲免费观看视频| 欧美精品 日韩| 老牛嫩草一区二区三区日本| 亚洲欧美中日韩| 亚洲视频狠狠| 99精品视频免费全部在线| 亚洲成人在线网站| 国内成人自拍视频| 国产一区二区久久| 国产亚洲欧美色| 国产欧美在线播放| 国产欧美短视频| 国产精品一香蕉国产线看观看 | 久久精品成人一区二区三区| 亚洲午夜精品久久久久久浪潮| 亚洲第一精品福利| 在线观看日韩av先锋影音电影院| 欧美激情综合网| 亚洲日本成人| 女同一区二区| 国内精品久久久久影院优| 国产精品永久免费| 国产精品系列在线| 国产欧美日韩中文字幕在线| 国产精品美女主播| 国产精品日本一区二区| 国产精品午夜春色av| 国产精品日韩在线播放| 国产日韩欧美在线看| 精品成人久久| 亚洲欧洲精品一区二区| 夜夜嗨av一区二区三区四区| 国产精品99久久久久久久久久久久| 国内外成人在线| 日韩视频国产视频| 国产精品一区二区三区观看| 国产亚洲欧美日韩在线一区| 亚洲最新合集| 久久久精品国产一区二区三区 | 国产色爱av资源综合区| 国精产品99永久一区一区| 欧美自拍偷拍午夜视频| 久久免费国产| 欧美人妖另类| 国产亚洲美州欧州综合国| 国产亚洲欧美一级| 欧美xx69| 美女黄色成人网| 欧美在线观看日本一区| 国产精品成人播放| 韩国久久久久| 99视频热这里只有精品免费| 午夜精品久久99蜜桃的功能介绍| 欧美一区二区视频在线观看2020| 美女视频黄免费的久久| 欧美日韩极品在线观看一区| 国产精品视频xxxx| 亚洲精品欧美极品| 久久疯狂做爰流白浆xx| 欧美私人网站| 亚洲国产欧美精品| 久久精品国产在热久久| 欧美日韩中文精品| 亚洲黄色成人久久久| 欧美一区午夜精品| 国产精品porn| 国产情人节一区| 亚洲人成久久| 久久精品综合| 国产欧美日本一区视频| 99re热这里只有精品免费视频| 久久精品一区四区| 国产毛片一区| 亚洲特级毛片| 欧美日韩亚洲不卡| 99国产麻豆精品| 欧美精品一区二区三区高清aⅴ| 国内精品伊人久久久久av影院| 亚洲深夜福利| 国产精品黄色| 亚洲一区尤物| 国产精品久久久久久超碰 | 欧美国产一区在线| 狠狠色丁香婷婷综合影院| 欧美一区二区三区视频在线 | 国产欧美日韩麻豆91| 中文一区二区| 国产精品一香蕉国产线看观看| 中文国产成人精品| 欧美性猛交xxxx免费看久久久| 日韩一区二区福利| 欧美午夜不卡在线观看免费 | 国产精品qvod| 亚洲中午字幕| 国产一区二区三区无遮挡| 欧美专区福利在线| 激情丁香综合| 免费日韩av| 日韩亚洲不卡在线| 国产精品久久久爽爽爽麻豆色哟哟| 99re8这里有精品热视频免费| 欧美日韩在线播放三区| 亚洲影院在线观看| 国产偷自视频区视频一区二区| 欧美一级黄色录像| 国产一区在线免费观看| 免费成人黄色av| 亚洲小说欧美另类社区| 国产日韩一区在线| 久热精品在线| 亚洲图片欧美日产| 韩国自拍一区| 欧美丝袜一区二区| 久久er精品视频| 亚洲经典在线看| 国产精品成人免费| 久久久久久久999精品视频| 亚洲大胆女人| 国产精品天美传媒入口| 免费精品99久久国产综合精品| 99成人精品| 极品av少妇一区二区| 欧美午夜电影完整版| 久久精选视频| 亚洲一区不卡| 亚洲国产婷婷香蕉久久久久久99 | 9l国产精品久久久久麻豆| 国产欧美日韩综合| 欧美日韩成人精品| 久久久久欧美精品| 亚洲欧美国产一区二区三区| 一区二区三区在线观看国产| 欧美手机在线视频| 欧美剧在线观看| 久热爱精品视频线路一| 午夜精品999| 在线中文字幕一区| 激情另类综合| 国产午夜精品视频| 国产精品日日摸夜夜添夜夜av| 欧美激情aⅴ一区二区三区| 久久久久久久综合色一本| 亚洲午夜高清视频| 一区二区三区|亚洲午夜| 在线观看成人av| 国产一区在线免费观看| 国产精品久久久久久久久婷婷| 欧美劲爆第一页| 欧美精品免费视频| 欧美激情一区| 亚洲一区二区少妇| 国产精品女人网站| 欧美与欧洲交xxxx免费观看 | 韩国在线一区| 国产精品美女黄网| 欧美性jizz18性欧美| 欧美精品v国产精品v日韩精品| 蜜桃久久精品乱码一区二区| 看片网站欧美日韩| 老司机免费视频一区二区三区| 欧美中文日韩| 久久理论片午夜琪琪电影网| 久久精品国产一区二区三区| 久久夜色撩人精品| 免费观看在线综合| 欧美精品色综合| 欧美日韩一区二区三区免费看 | 欧美日韩国产在线一区| 欧美日韩喷水| 国产欧美日韩专区发布| 国产一区二区三区四区老人| 欧美三级视频| 亚洲一区综合| 亚洲理伦在线| 亚洲精品久久久一区二区三区| 国产日韩1区| 亚洲国产一区二区a毛片| 亚洲精品视频二区| 亚洲视频你懂的| 欧美一区免费| 欧美成人午夜| 国产精品久久亚洲7777| 狠狠入ady亚洲精品| 亚洲免费久久| 欧美一级片在线播放| 免费日本视频一区| 国产精品永久| 亚洲每日在线| 久久久精彩视频|