99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP528代寫、代做c/c++編程設計

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達信量中尋莊副圖指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产麻豆日韩欧美久久| 亚洲免费观看高清完整版在线观看熊| 不卡的av中国片| 激情偷乱视频一区二区三区| 日韩精品久久久久久| 亚洲成人免费观看| 亚洲电影第三页| 五月婷婷色综合| 视频一区国产视频| 日韩精品福利网| 久久精品国产77777蜜臀| 免费观看在线色综合| 美女高潮久久久| 国产美女主播视频一区| 国产aⅴ综合色| 国产精品一区二区久激情瑜伽| 国产真实精品久久二三区| 精品亚洲成a人| 国产传媒一区在线| av资源网一区| 欧美亚洲动漫制服丝袜| 69堂国产成人免费视频| 精品国产百合女同互慰| 国产精品国产自产拍高清av | 色狠狠色噜噜噜综合网| 色综合久久久久网| 欧美乱熟臀69xxxxxx| 精品福利av导航| 国产精品乱人伦| 亚洲国产一区二区视频| 久久99精品久久只有精品| 粉嫩久久99精品久久久久久夜| 97精品国产97久久久久久久久久久久| 欧美色网站导航| 久久久亚洲国产美女国产盗摄 | 亚洲男人的天堂在线aⅴ视频| 一区二区三区欧美日| 免费人成黄页网站在线一区二区| 国产九色精品成人porny| 91在线无精精品入口| 884aa四虎影成人精品一区| 久久久久久久久久久久久女国产乱| 欧美极品xxx| 日韩高清不卡在线| 成人黄色小视频| 91精品免费在线| 国产精品久久久久久久浪潮网站| 香蕉影视欧美成人| 成人一区二区三区在线观看| 777精品伊人久久久久大香线蕉| 国产视频在线观看一区二区三区 | 久久久久久99精品| 极品美女销魂一区二区三区| 色婷婷精品久久二区二区蜜臂av | 成人毛片在线观看| 日韩午夜av一区| 亚洲综合久久久久| 成人高清免费在线播放| 精品动漫一区二区三区在线观看| 亚洲一区二区在线播放相泽| 国产福利一区二区三区视频在线| 制服丝袜国产精品| 亚洲综合在线第一页| 成人黄色一级视频| 国产无一区二区| 久久电影国产免费久久电影| 欧美人与禽zozo性伦| 亚洲日本一区二区| 99国产精品久久久久| 欧美韩国日本一区| 国产一区二区免费在线| 精品久久国产字幕高潮| 久久精品免费观看| 日韩视频国产视频| 日韩高清一区二区| 日韩欧美黄色影院| 奇米色一区二区| 日韩欧美亚洲一区二区| 日韩经典一区二区| 欧美一级高清大全免费观看| 日本vs亚洲vs韩国一区三区| 欧美精品久久久久久久多人混战| 午夜精品久久久久久久99水蜜桃| 欧美少妇bbb| 婷婷综合另类小说色区| 777久久久精品| 精品一区二区在线观看| 精品国产乱码久久久久久浪潮| 蜜桃久久av一区| 26uuu精品一区二区三区四区在线| 精品系列免费在线观看| 国产亚洲综合在线| 丁香桃色午夜亚洲一区二区三区| 国产欧美日韩三级| 日本道在线观看一区二区| 亚洲午夜精品网| 日韩一区二区三区观看| 国产精品夜夜嗨| 亚洲免费在线看| 欧美日韩国产在线播放网站| 奇米色一区二区三区四区| 久久久精品国产99久久精品芒果| 99久久精品情趣| 亚洲高清免费视频| 2024国产精品| 色综合激情久久| 日本欧美在线观看| 国产精品成人免费精品自在线观看| 色狠狠综合天天综合综合| 日本亚洲一区二区| 国产日韩欧美在线一区| 日韩精品中文字幕在线不卡尤物| 国产一区二区三区免费播放| 亚洲精品成人在线| 日韩欧美综合在线| 色综合婷婷久久| 久久99精品久久久久久动态图 | 欧美午夜一区二区三区免费大片| 麻豆精品国产传媒mv男同 | 日韩视频123| 91麻豆文化传媒在线观看| 蜜臀久久久久久久| 一区二区三区在线观看欧美| 精品黑人一区二区三区久久| 色天天综合色天天久久| 高清视频一区二区| 午夜a成v人精品| 亚洲狠狠丁香婷婷综合久久久| 欧美不卡视频一区| 欧美精品tushy高清| voyeur盗摄精品| 国产盗摄视频一区二区三区| 日韩电影免费一区| 亚洲一级在线观看| 亚洲人成精品久久久久久 | 欧美视频一区二区在线观看| 国产成人在线视频网址| 秋霞国产午夜精品免费视频| 亚洲免费观看高清完整版在线观看 | 成人免费毛片a| 久久99国产精品免费| 亚洲国产精品久久人人爱蜜臀| 国产精品视频你懂的| 精品福利一区二区三区免费视频| 欧美日韩的一区二区| 欧美在线综合视频| 在线一区二区三区做爰视频网站| 不卡一区二区在线| 成人小视频在线| 成人app网站| 91在线观看免费视频| 一本一本大道香蕉久在线精品| 不卡视频在线看| 高清av一区二区| 国产91精品一区二区麻豆网站| 黄页视频在线91| 紧缚奴在线一区二区三区| 美女网站视频久久| 激情综合色综合久久| 激情综合一区二区三区| 久久99久久99精品免视看婷婷| 久久超碰97中文字幕| 久久成人免费电影| 风间由美性色一区二区三区| 欧美午夜精品久久久| 色噜噜夜夜夜综合网| 欧美日韩一本到| 日韩一级免费观看| 久久精品欧美日韩精品 | 日韩va亚洲va欧美va久久| 免费成人你懂的| 国产一区二区免费视频| fc2成人免费人成在线观看播放| 成人app在线| 91.成人天堂一区| 久久色视频免费观看| 亚洲人亚洲人成电影网站色| 亚洲午夜私人影院| 麻豆视频一区二区| 成人一区二区三区在线观看| 91九色02白丝porn| 精品日产卡一卡二卡麻豆| 一区在线观看视频| 亚洲地区一二三色| 国产一区二区久久| 在线视频你懂得一区二区三区| 日韩一区二区三区av| 中文字幕一区三区| 偷拍亚洲欧洲综合| 成人av第一页| 日韩一级片在线观看| 中文字幕一区二区三区色视频| 三级久久三级久久久| 94色蜜桃网一区二区三区| 日韩欧美在线123| 亚洲女爱视频在线| 国产乱妇无码大片在线观看| 91久久国产最好的精华液| 久久综合九色综合欧美亚洲| 亚洲一区欧美一区|