99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COMP528代寫、代做c/c++編程設(shè)計

時間:2023-12-19  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達(dá)信量中尋莊副圖指標(biāo)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲第一综合天堂另类专| 亚洲午夜激情网页| 亚洲美女黄色| 亚洲免费视频观看| 久久国内精品自在自线400部| 久久夜色撩人精品| 欧美大片免费观看在线观看网站推荐| 欧美久久99| 国产精品免费看久久久香蕉| 国产亚洲成精品久久| 亚洲国产视频一区| 亚洲免费视频一区二区| 久久另类ts人妖一区二区| 欧美日韩不卡视频| 国内精品视频久久| 亚洲视频一区二区在线观看| 久久久蜜桃一区二区人| 欧美日韩系列| 亚洲二区在线观看| 亚洲免费网站| 欧美另类女人| 一区二区在线看| 午夜日韩视频| 欧美日本不卡| 亚洲国产精品123| 欧美亚洲综合在线| 欧美日韩亚洲一区二区三区四区| 国产伪娘ts一区| 亚洲香蕉成视频在线观看| 久久亚洲综合网| 国产一区91精品张津瑜| 亚洲一区久久| 欧美三级不卡| 亚洲美女av电影| 欧美xx69| 伊人久久久大香线蕉综合直播| 亚洲欧美日韩在线综合| 欧美另类女人| 亚洲日韩欧美视频| 久热精品在线视频| 狠狠色综合网站久久久久久久| 亚洲一区欧美二区| 欧美性大战久久久久久久蜜臀| 亚洲片在线资源| 欧美大片免费观看| 亚洲激情国产| 欧美jizz19hd性欧美| 国产一区二区激情| 久久av资源网| 韩国欧美一区| 久久综合精品国产一区二区三区| 国产一区二区三区电影在线观看| 亚洲欧美亚洲| 国产精品推荐精品| 欧美一区二区日韩| 国产精品视频男人的天堂| 亚洲性视频网站| 国产精品成人午夜| 亚洲天堂激情| 国产欧美日韩一区二区三区| 欧美在线观看一区| 国产精品稀缺呦系列在线| 亚洲一区亚洲二区| 国产欧美一区二区精品秋霞影院 | 欧美成人一区二区三区在线观看| 极品尤物av久久免费看| 久久久久久一区| 亚洲国产一区二区三区在线播| 麻豆亚洲精品| 99伊人成综合| 国产精品视频yy9099| 欧美在线综合| 亚洲国产精品久久久久秋霞影院 | 国产人成一区二区三区影院| 欧美一区二区精品| 精品999网站| 欧美精品在线视频| 午夜免费久久久久| 亚洲第一页在线| 欧美三级在线播放| 欧美中在线观看| 亚洲激情第一页| 国产精品资源| 欧美va亚洲va国产综合| 99精品福利视频| 国产伪娘ts一区| 欧美国产在线电影| 性久久久久久久久| 亚洲欧洲在线一区| 国产乱码精品一区二区三区五月婷 | 99综合电影在线视频| 国产精品久久一区主播| 久久视频在线视频| 亚洲最新视频在线| 精品二区视频| 国产精品mm| 久久综合久久美利坚合众国| 宅男噜噜噜66一区二区| 激情欧美亚洲| 欧美三区美女| 欧美高清视频www夜色资源网| 亚洲综合三区| 亚洲美女在线观看| 有码中文亚洲精品| 国产麻豆精品视频| 欧美日韩精品免费观看| 美女黄网久久| 久久成人免费日本黄色| 亚洲私人影吧| 99re8这里有精品热视频免费| 国产真实久久| 国产精品视区| 欧美日韩直播| 欧美精品久久一区| 免费欧美高清视频| 久久久国际精品| 久久激情网站| 欧美一区二区三区日韩| 亚洲欧美电影在线观看| 在线视频中文亚洲| 99re6这里只有精品视频在线观看| 伊人伊人伊人久久| 国内在线观看一区二区三区| 国产欧美日韩麻豆91| 国产精品久久久久久超碰| 欧美人成在线| 欧美日韩一区二区三区四区在线观看| 欧美99久久| 欧美二区在线| 欧美日韩国产欧| 欧美日韩国产精品专区| 欧美精品一区二区三区在线看午夜 | 在线免费观看一区二区三区| 一区免费观看| 尤妮丝一区二区裸体视频| 精品1区2区3区4区| 亚洲国产精品悠悠久久琪琪| 亚洲欧洲日本国产| 亚洲最黄网站| 亚洲永久精品大片| 香蕉久久夜色精品国产| 欧美在线一级va免费观看| 久久精品一区四区| 久久伊人免费视频| 欧美aaaaaaaa牛牛影院| 欧美日韩在线视频一区| 国产欧美日韩视频在线观看| 加勒比av一区二区| 亚洲国产高潮在线观看| 日韩视频免费在线| 亚洲欧美国产毛片在线| 久久久久99| 欧美久久久久久蜜桃| 国产精品美女久久久浪潮软件 | 日韩视频永久免费| 亚洲欧美日本在线| 久久免费视频观看| 欧美日韩久久精品| 国产精品亚洲аv天堂网| 韩国成人精品a∨在线观看| 91久久国产综合久久蜜月精品| 日韩视频免费观看高清在线视频| 亚洲视频欧洲视频| 久久九九99| 欧美性理论片在线观看片免费| 国产区在线观看成人精品| 亚洲日韩第九十九页| 性欧美暴力猛交69hd| 欧美寡妇偷汉性猛交| 国产欧美精品一区二区三区介绍| 亚洲电影av在线| 亚洲欧美日韩一区二区在线| 久久一区激情| 国产精品无人区| 日韩视频免费大全中文字幕| 欧美综合国产精品久久丁香| 欧美日韩国产在线播放网站| 精品成人乱色一区二区| 亚洲视频视频在线| 欧美jizz19性欧美| 国产一区91精品张津瑜| 亚洲图片欧洲图片日韩av| 欧美电影在线观看| 国内精品免费在线观看| 亚洲欧美在线一区| 欧美日韩一区二区三区在线观看免 | 欧美激情综合色| 狠狠色丁香久久综合频道| 亚洲视屏在线播放| 欧美精品二区| 亚洲国产三级网| 久久久精品免费视频| 国产精品国产精品| 一本色道久久综合亚洲精品小说 | 亚洲资源在线观看| 欧美日韩三区| 一片黄亚洲嫩模| 欧美激情精品久久久久久久变态| 精品999在线观看| 久久久久久婷|