99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP528代寫、代做c/c++編程設計

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達信量中尋莊副圖指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产成人综合亚洲91猫咪| 久久综合色之久久综合| 亚洲精品成人精品456| 青草av.久久免费一区| 91精品国产一区二区三区| 免费看日韩a级影片| 日韩精品中文字幕一区二区三区| 国产一区二区三区视频在线播放| 国产亚洲福利社区一区| 99久久久免费精品国产一区二区| 综合久久久久久久| 欧美日韩国产一级片| 精品一区二区三区免费| 国产精品午夜久久| 欧美人动与zoxxxx乱| 国产在线视频一区二区| 亚洲欧美日韩一区二区三区在线观看 | 欧美不卡一区二区三区| 国产jizzjizz一区二区| 亚洲自拍偷拍九九九| 久久婷婷综合激情| 欧美丝袜自拍制服另类| 成人av片在线观看| 天天综合日日夜夜精品| 国产精品福利电影一区二区三区四区| 欧美少妇性性性| 91年精品国产| 国产麻豆午夜三级精品| 亚洲国产综合人成综合网站| 国产亲近乱来精品视频| 精品免费国产一区二区三区四区| 97精品电影院| 国产aⅴ综合色| 黄色小说综合网站| 舔着乳尖日韩一区| 一区二区三区av电影| 久久精品一区二区三区不卡 | 91啪亚洲精品| 波多野结衣欧美| 豆国产96在线|亚洲| 国精产品一区一区三区mba桃花| 亚洲6080在线| 亚洲超碰精品一区二区| 一区二区三区中文字幕| 亚洲色图一区二区三区| 国产精品久久久久久久久晋中| 久久婷婷色综合| 2020国产成人综合网| 91精品国产一区二区三区| 7777精品伊人久久久大香线蕉的| 欧洲视频一区二区| 在线观看亚洲a| 欧美视频在线观看一区| 欧美日免费三级在线| 欧美日韩亚洲不卡| 91精品在线观看入口| 日韩一本二本av| 欧美大片日本大片免费观看| 欧美成人精品1314www| 日韩精品中午字幕| 国产欧美精品一区aⅴ影院| 亚洲欧美中日韩| 亚洲一区二区av电影| 日韩 欧美一区二区三区| 日韩成人一区二区| 国产激情精品久久久第一区二区 | 国产成人av一区二区三区在线观看| 国内偷窥港台综合视频在线播放| 国产乱人伦偷精品视频不卡| 成人黄色av电影| 欧美无人高清视频在线观看| 91精品国产综合久久久蜜臀图片| 91精品欧美久久久久久动漫 | 午夜欧美在线一二页| 日韩影视精彩在线| 国产精品乡下勾搭老头1| 成人免费的视频| 欧美在线你懂的| 91精品国产综合久久久久| 91精品国产黑色紧身裤美女| 久久久久久99久久久精品网站| 成人高清免费在线播放| 成人一级视频在线观看| 在线视频国内自拍亚洲视频| 日韩视频免费观看高清在线视频| 国产欧美精品在线观看| 亚洲成a天堂v人片| 精品一区二区三区蜜桃| 99re成人精品视频| 日韩网站在线看片你懂的| 国产精品伦一区二区三级视频| 日韩中文欧美在线| 色偷偷88欧美精品久久久| 日韩精品一区二区三区中文精品| 亚洲精品日日夜夜| 国产酒店精品激情| 91精品国产91久久久久久最新毛片 | 久久久亚洲午夜电影| 亚洲一区在线电影| 丁香另类激情小说| 日韩欧美精品在线| 亚洲激情一二三区| jiyouzz国产精品久久| 欧美xxxxx牲另类人与| 亚洲一区日韩精品中文字幕| 成人黄色777网| 久久午夜电影网| 美女性感视频久久| 欧美三级电影精品| 一区二区三区四区国产精品| 成人听书哪个软件好| 精品国产1区2区3区| 日韩综合小视频| 欧美挠脚心视频网站| 亚洲激情图片一区| 91论坛在线播放| 国产精品久久国产精麻豆99网站| 国产一区二区按摩在线观看| 欧美不卡视频一区| 国产在线视频精品一区| 精品国产网站在线观看| 欧美aaaaa成人免费观看视频| 欧美日韩五月天| 亚洲电影在线播放| 欧美视频在线一区二区三区 | 精品久久久久香蕉网| 青青青爽久久午夜综合久久午夜| 欧美色图免费看| 性久久久久久久久| 欧美日韩在线播放三区| 午夜国产精品影院在线观看| 69堂国产成人免费视频| 精品一区二区三区免费毛片爱| 久久日一线二线三线suv| 国产在线播精品第三| 国产精品午夜在线观看| 色av综合在线| 日韩高清不卡一区二区三区| 精品久久久网站| 懂色av一区二区三区蜜臀| 亚洲同性同志一二三专区| 91搞黄在线观看| 水野朝阳av一区二区三区| 精品久久久久久最新网址| 国产精品一区二区在线观看网站 | 久久综合久久综合亚洲| 国产九九视频一区二区三区| 国产精品欧美一级免费| 91成人网在线| 久久精品国产99久久6| 久久精品这里都是精品| 日本精品一区二区三区四区的功能| 午夜欧美在线一二页| 国产无一区二区| 91福利在线观看| 久久激情五月激情| 亚洲欧美日韩国产手机在线 | 日韩av网站免费在线| 国产午夜久久久久| 欧美综合久久久| 国模大尺度一区二区三区| 1区2区3区欧美| 精品欧美乱码久久久久久| 色婷婷精品大在线视频| 免费精品视频最新在线| 亚洲欧美视频在线观看视频| 精品国一区二区三区| 色香蕉成人二区免费| 国内成+人亚洲+欧美+综合在线| 一区二区三区在线看| 久久蜜桃一区二区| 欧美久久久久久久久久| 9人人澡人人爽人人精品| 喷白浆一区二区| 亚洲国产aⅴ成人精品无吗| 国产色婷婷亚洲99精品小说| 在线不卡欧美精品一区二区三区| 99精品视频一区二区三区| 久久精品国产99| 日日夜夜精品视频天天综合网| 亚洲欧美另类小说| 中文在线一区二区| 精品成人免费观看| 日韩一级片在线观看| 欧美猛男gaygay网站| 99精品视频在线播放观看| 成人性生交大片免费看在线播放| 久久精品国产99| 美女视频网站久久| 日韩avvvv在线播放| 日韩国产成人精品| 水野朝阳av一区二区三区| 夜夜嗨av一区二区三区网页| 中文字幕日本乱码精品影院| 中文字幕欧美三区| 中文字幕欧美三区| 中文字幕中文字幕中文字幕亚洲无线| 精品国产99国产精品| 久久亚洲精精品中文字幕早川悠里| 日韩天堂在线观看|