99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COMP528代寫、代做c/c++編程設(shè)計

時間:2023-12-19  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達(dá)信量中尋莊副圖指標(biāo)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                成人中文字幕在线| 国产精品高潮久久久久无| 国产成人亚洲综合a∨婷婷 | 日韩精品福利网| 亚洲人成影院在线观看| 中文字幕精品一区二区精品绿巨人| 日韩欧美国产综合在线一区二区三区 | 午夜久久久久久电影| 亚洲综合免费观看高清完整版在线| 毛片一区二区三区| 亚洲国产wwwccc36天堂| 午夜亚洲福利老司机| 日韩一区欧美二区| 精品亚洲成a人| 国产精品白丝jk黑袜喷水| 成人自拍视频在线| 成人av资源下载| 韩国欧美国产1区| 国产美女一区二区三区| 亚洲第一福利视频在线| 午夜精品久久久久久久久久| 亚洲综合激情网| 美女高潮久久久| 国产在线播放一区三区四| 麻豆成人91精品二区三区| 国产一区二区在线观看免费| 久久66热re国产| 国产精品99久久久久久宅男| 国产中文字幕精品| 国产精品一品视频| 色婷婷av一区| 欧美日韩在线直播| 日韩精品在线一区二区| 国产精品美女www爽爽爽| 国产精品美女久久久久aⅴ| 亚洲黄色免费电影| 国产麻豆精品在线观看| 国产精品1区2区| 国产在线观看一区二区| 92精品国产成人观看免费| 91精品欧美综合在线观看最新| 亚洲精品在线三区| 一个色妞综合视频在线观看| 麻豆精品国产传媒mv男同 | 亚洲欧美偷拍卡通变态| 人人精品人人爱| 午夜视频一区在线观看| 99久久伊人网影院| 91精品国产91久久久久久一区二区 | 欧美裸体bbwbbwbbw| 欧美高清你懂得| 国产精品久久夜| 一区二区三区中文字幕精品精品| 国产精品18久久久久久vr| 日本韩国欧美三级| 亚洲视频在线一区观看| 亚洲美女精品一区| 日本女人一区二区三区| 久久久精品tv| 国产精品色在线| 国产麻豆精品95视频| 专区另类欧美日韩| 亚洲欧美区自拍先锋| 在线精品观看国产| 久久久久久免费网| 日韩电影一区二区三区四区| 色综合久久天天| 国产视频一区不卡| 国产一区二区精品久久99| 欧美色图一区二区三区| 国产精品区一区二区三| 久久狠狠亚洲综合| 亚洲欧洲三级电影| 国产成人在线视频网址| 久久久亚洲欧洲日产国码αv| 一区二区三区精密机械公司| 精品一区二区三区在线播放视频| 99久久精品费精品国产一区二区| 欧美电影在线免费观看| 欧美日韩不卡视频| 国产欧美精品一区二区色综合朱莉| 激情综合五月婷婷| 亚洲视频在线一区二区| 7777精品伊人久久久大香线蕉的 | 成人av网站免费观看| 亚洲成人免费影院| 粉嫩aⅴ一区二区三区四区五区| 日韩色在线观看| 欧美a一区二区| 91精品国产色综合久久久蜜香臀| 午夜精品久久久久久久久久久 | 国产精品无人区| 激情av综合网| 国产欧美日产一区| gogo大胆日本视频一区| 国产精品久久国产精麻豆99网站| 风间由美一区二区三区在线观看| 久久成人羞羞网站| 亚洲天堂成人在线观看| 欧美电视剧在线看免费| 日韩一区和二区| 国产成人精品一区二区三区网站观看| 天堂资源在线中文精品| 国产精品青草久久| 国产精品福利在线播放| 久久久美女毛片| 国产精品乱码一区二区三区软件| 欧美r级电影在线观看| 欧美伊人久久大香线蕉综合69| 99re这里都是精品| 成人国产免费视频| 91福利小视频| 日韩欧美自拍偷拍| 欧美挠脚心视频网站| 欧美午夜电影一区| 国产一区在线观看视频| 欧美精品一区二区精品网| 欧美一区二区三区四区五区| 欧美视频中文字幕| 欧美一区二区三区婷婷月色| 成人精品视频一区| 欧美日韩国产精品成人| 麻豆精品一区二区三区| 欧美激情自拍偷拍| 制服视频三区第一页精品| 粉嫩一区二区三区在线看| 性久久久久久久| 国产精品久久网站| 欧美日韩dvd在线观看| 国产夫妻精品视频| 国产女主播视频一区二区| 亚洲天堂福利av| 亚洲国产精品天堂| 国产成人三级在线观看| 欧美精品v国产精品v日韩精品 | 欧美精品在线观看播放| 精品国内二区三区| 欧美日韩国产美| 911国产精品| 日本不卡123| 久久日一线二线三线suv| 在线欧美日韩精品| 成年人国产精品| 极品少妇xxxx精品少妇偷拍 | 91精品午夜视频| 国产精品一区二区91| 一区二区欧美国产| 国产精品久久久久久久久免费丝袜| 欧美日韩高清一区二区不卡| av在线免费不卡| 日本成人在线电影网| 国产精品―色哟哟| 日韩一区二区精品葵司在线| 欧美男生操女生| 色婷婷久久久亚洲一区二区三区| 久草在线在线精品观看| 日韩精品免费视频人成| 亚洲欧美偷拍另类a∨色屁股| 亚洲精品一区二区在线观看| 欧美一区二区三区免费大片| 91一区一区三区| 99riav一区二区三区| eeuss国产一区二区三区| 国产成人精品三级| 精品亚洲成a人| 精品一区二区av| 国产一区二区三区国产| 韩国一区二区三区| 国产在线播放一区三区四| 日韩影院在线观看| 午夜精品久久久久久久99樱桃| 亚洲国产精品久久久久秋霞影院| 最新不卡av在线| 国产日韩欧美一区二区三区乱码| 欧美电影免费观看高清完整版在线| 欧美电影免费提供在线观看| 久久综合成人精品亚洲另类欧美 | 国产色综合久久| 亚洲国产精品成人久久综合一区| 亚洲精品在线三区| 久久一区二区三区四区| 亚洲国产成人在线| 久久精品一区二区三区av| 国产日韩欧美制服另类| 国产精品视频你懂的| 亚洲男人都懂的| 亚洲一区二区四区蜜桃| 午夜视频在线观看一区| 精品一区二区日韩| 亚洲一区二区精品久久av| 一本大道久久a久久综合婷婷| 亚洲午夜精品久久久久久久久| 91美女片黄在线观看91美女| 日日欢夜夜爽一区| 亚洲三级在线播放| 欧美成人性福生活免费看| av午夜精品一区二区三区| 国产精品77777竹菊影视小说| 亚洲国产精品久久久男人的天堂| 欧美一区二区三区公司|